How to Integrate External Data Files with Your COMSOL® App

Temesgen Kindo | August 30, 2016

Have you ever wanted to integrate your COMSOL® software apps with external data files? These files can contain material properties, geometric dimensions, or other model inputs, and such data can derive from internal company standards or be provided by a vendor. Built-in methods in the Application Builder simplify reading from these files and displaying options read. To show this procedure, we will build an app that populates a combo box with material properties from a comma-separated values (CSV) file.

Read More

Bridget Paulus | August 29, 2016

Leon Theremin, a Russian inventor, is best known for creating the theremin as well as the Thing, also called the Great Seal bug. Referred to as the “Russian Edison”, his passion for physics and music fostered the growth of electronic instruments on an international scale. Today, we celebrate the life and accomplishments of this influential figure.

Read More

Categories

Scott Smith | August 24, 2016

Resistive and capacitive effects are fundamental to the understanding of electrochemical systems. The resistances and capacitances due to mass transfer can be represented through physical equations describing the corresponding fundamental phenomena, like diffusion. Further, when considering the resistive or capacitive behavior of double layers, thin films, and reaction kinetics, such effects can be treated simply through physical conditions relating electrochemical currents and voltages. Lastly, resistances and capacitances from external loading circuits can easily be represented in the COMSOL Multiphysics® software.

Read More

Beatrice Carasi | August 22, 2016

The numerical analysis of fluid flow and temperature fields can offer valuable insight in many engineering applications. Efficiency, of course, is important when performing such simulations. Here, we’ll discuss the various formulations for fluid flow equations in the COMSOL Multiphysics® simulation software and when it’s best to use each option, paying particular attention to how this selection influences heat transfer analyses. We will also cover how to set up both natural and forced convection simulations using these formulations.

Read More

Pawan Soami | August 17, 2016

Realistic gear geometries are useful for multibody dynamics simulations when coupled with other physical phenomena. Rather than manually building these geometries, we can use built-in parts available in the Part Library. With these highly parameterized gear parts, we can build a wide range of parallel and planetary gear trains and learn how to use different aspects of the built-in parts to create a realistic gear model in the Multibody Dynamics Module.

Read More

Peng-Chhay Ung | August 15, 2016

The flash method, first described by W.J. Parker et. al in 1961, is a widely used technique for measuring the thermal conductivity of materials. Our Flash Method demo app, highlighted here, performs a numerical simulation of this experiment, offering a simplified approach to modifying parameters that can impact its overall accuracy. Today, we’ll take a closer look at this easy-to-use app, as well as the theory behind it.

Read More

Caty Fairclough | August 26, 2016

Around the world, trash is added to landfills at an increasingly rapid rate. Since these landfills take up large areas of land and can cause environmental issues, researchers are looking for safer, space-saving solutions. One option is to convert traditional anaerobic landfills into aerobic bioreactor landfills. This conversion process needs to be studied further, which could take years experimentally. For faster results, researchers at the University of Western Ontario used the COMSOL Multiphysics® software to efficiently analyze this process.

Read More

Matteo Lualdi | August 23, 2016

Today, guest blogger Matteo Lualdi of resolvent ApS, a COMSOL Certified Consultant, discusses the benefits of creating a simulation app to analyze a solid oxide fuel cell stack. For many businesses, numerical modeling and simulation are valuable tools at various stages of the design workflow, from product development to optimization. Apps further extend the reach of these tools, hiding complex multiphysics models beneath easy-to-use interfaces. Here’s a look at one such example: a solid oxide fuel cell stack app.

Read More

Caty Fairclough | August 18, 2016

Does your simulation take a large amount of computational time to solve? One potential reason for this is that your mesh is using too many elements. In cases such as this, you may want to switch to user-controlled mesh to manually build and edit the meshing sequences available in the COMSOL Multiphysics® software as an alternative to using the default meshing sequence. As we’ll highlight with a tutorial example, this can help reduce memory requirements while providing accurate results.

Read More

Bridget Cunningham | August 16, 2016

Like many crops, the quality of dates is heavily impacted by agronomic practices. In Tunisia, for example, such elements have caused these soft edible fruits to become drier in nature. One approach to improving the quality of these dates is thermal processing, where the key unit of operation is hydration. Combining the power of experimental studies with simulation analyses, a team of researchers sought to optimize the hydration process in order to foster greater efficiency and reliability.

Read More

Walter Frei | August 11, 2016

Extending our discussion on modeling the harmonic excitations of linear systems, we will now shift focus to nonlinear systems. We will look at problems where the loading on the system has some sinusoidal components as well as cases where the material properties or loads and constraints depend directly on the solution. As you will see, COMSOL Multiphysics can address these apparently nonlinear cases with some very efficient solution algorithms. Let’s find out how.

Read More

Categories

1 2 3 106