The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


One-Sided Magnet and Plate

Permanent magnets with a one-sided flux have many uses. The one-sided flux behavior is obtained by giving the magnet a magnetization that varies in the lateral direction. This model shows this technique to model a cylindrical one-sided permanent magnet. A special technique to model thin sheets of high permeability material was used to model a thin metal plate next to the magnet. This ...

Relativistic Diverging Electron Beam

When modeling the propagation of charged particle beams at high currents and relativistic speeds, the space charge and beam current create significant electric and magnetic forces that tend to expand and focus the beam, respectively. The *Charged Particle Tracing* interface uses an iterative procedure, in this example, to efficiently compute the strongly coupled particle trajectories and ...

Iron Sphere in a 20 kHz Magnetic Field

An iron sphere is exposed to a spatially uniform, sinusoidally time-varying, background magnetic field. The frequency of the field is such that there skin depth is smaller than the sphere radius. The induced currents in the sphere and the perturbation to the background field are computed. Proper meshing of domains with significant skin effect is addressed.

Axial Magnetic Bearing Using Permanent Magnets

Permanent magnet bearings are used in turbo machinery, pumps, motors, generators, and flywheel energy storage systems, to mention a few application areas; contactless operation, low maintenance, and the ability to operate without lubrication are some key benefits compared to conventional mechanical bearings. This model illustrates how to calculate design parameters like magnetic forces and ...

Tunable MEMS Capacitor

In an electrostatically tunable parallel plate capacitor, the distance between the two plates can be modified by a spring, as the applied voltage changes. For a given voltage difference between the plates, the distance of the two plates can be computed, if the characteristics of the spring are known. Knowledge of this means that the distance between the plates can be tuned via the spring. ...

Electric Impedance Sensor

Electric impedance measurements are used for imaging and detection. Applications range from nondestructive testing and geophysical imaging to medical imaging. Several alternative techniques are shown to model such a system. One of them shows how to use conditional expressions to define spatially dependent material properties. Another shows how to use multiple terminals for distributed sensing ...

Electrodynamic Bearing

This model illustrates the working principle of a passive electrodynamic bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that opposes the magnetic fields by the magnets and induces a force that opposes the motion of the rotor. The radial ...

Static Field Modeling of a Halbach Rotor

This model presents the static field modeling of an outward flux focusing magnetic rotor using permanent magnets. This magnetic rotor is also often called a Halbach rotor. The use of permanent magnets in rotatory devices such as motors, generators and magnetic gears is increasing. The accurate modeling of a permanent magnets fields is important. This model illustrates how to calculate the ...

Tubular Permanent Magnet Generator

This tutorial example shows how to model the tubular permanent magnet generator in 2D-axisymmetry. The generator consists of a modular stationary stator and moving/oscillating slider. The stator is made of three-phase multi-turn windings and iron core. The slider is made of permanent magnets and iron spacers. The open circuit voltage in the three-phase stator windings due to the periodic motion ...

Inductance of a Power Inductor

Power inductors are a central part of many low-frequency power applications. They are, for example, used in the switched power supply for the motherboard and all other components in a computer. Computer simulations are necessary in the design of such inductors. This model calculates the inductance from specified material parameters.