The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Computing Intercepted Flux

This example model demonstrates four different approaches for computing the integrals of fields over arbitrarily placed geometries that can be re-positioned without having to re-solve the model. This approach is also useful if you want to integrate the results of a model over different sub-regions that you do not want to include in your original computational model. The example of computing ...

Operational Amplifier with Capacitive Load

An operational amplifier (op-amp) is a differential voltage amplifier with a wide range of applications in analog electronics. This tutorial models an op-amp connected to a feedback loop and a capacitive load. The op-amp is modeled as an equivalent linear subcircuit in the *Electrical Circuit* interface, where it is inserted into an outer circuit. The model is partially based on the SPICE ...

Simulation of RF Tissue Ablation

This example exemplifies how to model tissue ablation through applying RF radiation. A more detailed description of the phenomenon, and the modeling process, can be seen in the blog post "[Study Radiofrequency Tissue Ablation Using Simulation](/blogs/study-radiofrequency-tissue-ablation-using-simulation/)".

Small-Signal Analysis of an Inductor

If an inductor's magnetic material is nonlinear, then the inductance depends on the current passing through it. This model consists of an inductor with a nonlinear magnetic core, where the small-signal inductance is simulated as a function of current. The model also investigates how the small-signal inductance depends on the DC current.

Iron Sphere in a 60 Hz Magnetic Field

An iron sphere is exposed to a spatially uniform, sinusoidally time-varying, background magnetic field. The frequency of the field is low enough such that the skin depth is larger than the radius of the sphere. A reduced field formulation is used to impose the background field. Two approaches for solving this problem are shown. The induced currents in the sphere and the perturbation to the ...

Touchscreen Simulator

Intended as a tool for early proof of concept in capacitive touchscreen device development, the Touchscreen Simulator app evaluates a simulated capacitance matrix as well as the electric field norm. The app computes the capacitance matrix of a touchscreen in the presence of a human finger phantom, where the position and orientation of the finger are controlled via input parameters. This ...

Contact Impedance Comparison

The contact impedance boundary condition is meant to approximate a thin layer of material that impedes the flow of current normal to the boundary, but does not introduce any additional conduction path tangential to the boundary. This example compares the contact impedance boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Capacitance Matrix of Two Spheres

This model compares the numerical and analytical solutions for the capacitance matrix of two nonconcentric spheres. It also illustrates the relation between the Maxwell capacitance matrix and the mutual capacitance matrix.

Modeling a Capacitive Position Sensor Using BEM

This tutorial model explains how to extract lumped matrices by means of the _Stationary Source Sweep_ study. The capacitance matrix of a five-terminal system is used to infer the position of a metallic object rather like real-world capacitive position sensors. The example illustrates the use of the boundary element method (BEM), which is supported by the _Electrostatics, Boundary Elements_ ...

Characteristic Parameters of a Coaxial Cable

Electrical cables, also called transmission lines, are used everywhere in the modern world to transmit both power and data. These cables carry electromagnetic energy, but instead of dealing with the full complexity of the electromagnetic fields, they are more commonly classified according to parameters such as capacitance, inductance, and impedance. In this model of a coaxial cable, we ...