The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.
Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.
This tutorial demonstrates how to model the band-to-band tunneling across a p–n junction. The tunneling effect is imitated by defining the User-Defined Recombination domain feature which makes the electrons disappear from the conduction band on the n-side and holes disappear from the ... Read More
This model shows how to model a simple Metal–Insulator–Metal (MIM) diode. The two metal electrodes are defined on each side using the Metal Contact feature. Two studies were performed: one without quantum tunneling across the potential barrier and the other including it, using the WKB ... Read More
The example shows how to generate a discharge model from the Reaction Engineering interface with a self-defined discharge chemistry. It reproduces the library model 127181 (Double-Headed Streamer in Parallel-Plate Electrodes). Read More
Many robot vacuum cleaners nowadays are equipped with lidar for spatial mapping in order to design an optimal cleaning path and navigate in a room without bumping into obstacles. This model simulates the lidar of a robot vacuum cleaner and how it maps out the shape of the room using ... Read More
Multiscale modeling is a challenging issue in modern simulation. This occurs when there are vastly different scales in the same model. For example, your cell phone is approximately 10 cm, yet it receives GPS information from satellites 20,000 km away. In these models we examine several ... Read More
This example exemplifies how to model the impedance of a waveguide of varying cross sectional area. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "Computing the Impedance of a Corrugated Waveguide". Read More
The model illustrate the technique to calculate the magnetic stiffness in a 3D geometry of a permanent magnet axial magnetic bearing. The Magnetic Fields physics is used to model the bearing and compute the magnetic forces. The Deformed Geometry and Sensitivity physics are used to ... Read More
This single-phase induction motor model is used to compare with Testing Electromagnetic Analysis Method (TEAM) workshop problem 30. The Magnetic Fields physics interface is used to model the motor in the frequency domain at 60 Hz. The Velocity (Lorentz Term) feature is used to model the ... Read More
This model demonstrates three different ways to find the eigenfrequencies of a rectangular metallic cavity. The first method uses an eigenfrequency study step together with the Electromagnetic Waves, Beam Envelopes interface. Here, it is important to define a wave vector for the physics ... Read More
In this model, a linear magnetic gear system with a gear ratio of 11:4 is modeled. The liner magnetic gear is assumed to be infinitely long with the modular structure that is repeating on either side. Only a single modular section is modeled by using the customized linear periodic ... Read More