Quick Search

Simulation of Electro-Thermal Transients in Superconducting Accelerator Magnets

L. Bortot [1], M. Maciejewski [2], M. Prioli [1], B. Auchmann [3],
[1] CERN, Geneva, Switzerland
[2] CERN, Geneva, Switzerland; Lodz University of Technology, Lodz, Poland
[3] CERN, Geneva, Switzerland; Paul Scherrer Institute, Zurich, Switzerland

The paper presents the application of COMSOL Multiphysics® software to the modelling of superconducting accelerator magnets. A 2D magneto-thermal model is developed, using an equivalent magnetization formulation to take into account the eddy-currents’ effects. Due to the model complexity, a suitable workflow has been developed in Java® to extensively use the available COMSOL API. The automation of the model building drastically reduced the construction time. The model development aims to enhance the analysis capabilities over the magnet’s quench, a sudden transient phenomenon that leads the cable from the superconducting to the normal state. The results are presented for an LHC main dipole magnet.