See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

2008 - Hannoverx

Modelling of the Temporal Analysis of Products (TAP) Reactor with COMSOL

S. Pietrzyk[1], A. Khodakov[1], and M. Olea[2]
[1]Unite de Catalyse et de Chimie du Solide, USTL-ENSCL-EC Lille, Villeneuve d’Ascq, France
[2]School of Science and Technology, University of Teesside, Middlesbrough, UK

A TAP reactor is a fixed-bed catalytic reactor operated in pulse (transient) mode under very low pressures. It has become a very important tool in catalytic studies as it fills the material and pressure gaps existing between practical conditions and high vacuum – monocrystal techniques. ... Read More

Calculating Iron Losses Taking into Account Effects of Manufacturing Processes

P. Goes, E. Hoferlin, and M. De Wulf
OCAS N.V. – ArcelorMittal Research Gent, Belgium

Finite element modelling of electrical machines usually assumes uniform magnetic properties and loss behaviour throughout the steel laminations. It is well known that manufacturing processes, like the assembly of the machine, deteriorate the properties of the core material. Generally, ... Read More

Numerical Simulation of Si Nanosecond Laser Annealing by COMSOL Multiphysics

M. Darif, and N. Semmar
GREMI-UMR6606, CNRS-Universite d’Orleans, Orléans, France

A 2D transient heat conduction model was created in COMSOL Multiphysics to simulate temperature changes in material irradiated by a KrF laser beam confined on silicon’s surface. In this paper, the obtained results are shown and discussed in case of bulk Silicon. The heat source is ... Read More

Simulation of Unidirectional Interdigital Transducers in SAW Devices using COMSOL Multiphysics

D. Pradeep, N. Krishnan, and H. Nemade
Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, India

Surface acoustic wave (SAW) devices based on Rayleigh wave, shear wave, love wave, acoustic plate mode (APM) wave and flexural plate wave have been explored for sensors, actuators and telecommunication applications. An interdigital transducer (IDT) is a metallic comb-like structure ... Read More

Simulation of Current Collector Corrosion Effects on the Efficiency of Molten Carbonate Fuel Cells

I. Sgura[1], F. Zarcone[2], and B. Bozzini[2]
[1]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[2]Brindisi Fuel Cell Durability Laboratory, Facoltà di Ingegneria Industriale, Università del Salento, Brindisi, Italy

Corrosion and contact ohmic resistance of the stainless steel current collectors in molten carbonates is one of the greatest obstacles to widespread application of molten carbonate fuel cells (MCFC). We simulate the variation of material parameters values, accounting for the impact of ... Read More

Numerical Modelling of Vortex Induced Vibrations  in Submarine Pipelines

F. Van den Abeele, J. Vande Voorde, and P. Goes
ArcelorMittal Research & Development Industry Gent, Zelzate, Belgium

Vortex-induced vibration is a major cause of fatigue failure in submarine oil and gas pipelines and steel catenary risers. Even moderate currents can induce vortex shedding. In this paper, COMSOL Multiphysics is applied to study the flow pattern around submarine pipeline spans, and ... Read More

A Numerical Model for Transient Heat Conduction in Semi-Infinite  Solids Irradiated by a Moving Heat Source

N. Bianco[1], O. Manca[2], S. Nardini[2], and S. Tamburrino[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A numerical analysis on transient three-dimensional temperature distribution in a semi-infinite solid, irradiated by a moving Gaussian laser beam, is carried out numerically by means of the code COMSOL Multiphysics. The investigated workpiece is simply a solid. A laser source is ... Read More

Transient Conjugate Optical-thermal Fields in Thin Films Irradiated by Moving Sources: A Comparison between Back and Front Treatment

N. Bianco[1], O. Manca[2], and D. Ricci[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A two dimensional instationary analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure on a glass substrate by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. COMSOL Multiphysics ... Read More

Optimization of Skin Impedance Sensor Design with Finite Element Simulations

F. Dewarrat, L. Falco, A. Caduff, and M. Talary
Solianis Monitoring AG, Zürich, Switzerland

Impedance spectroscopy is a measurement technique that has been investigated in a wide variety of medical applications. An example is the measurement of the dielectric properties of the skin and underlying tissue using sensors placed in contact with human skin with capacitive fringing ... Read More

Supercritical CO2 Leakage Modelling for Well Integrity in Geological Storage Project

E. Houdu, O. Poupard, and V. Meyer
OXAND S.A., France

CO2 capture and storage constitutes a promising solution to control and reduce these emissions. Wellbore integrity is a key challenge to ensure long term safety and for public acceptance. For this objective, a two-phase flow model in porous media based on Darcy’s law has been proposed to ... Read More