Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Drying of Cellular Ceramic Structures: Coupled Electromagnetic and Multiphase Porous Media Model

A. Dhall[1], G. Peng[2], G. Squier[2], M. Geremew[3], L. Bogaczyk[2], J. George[3], W.A. Wood[3], and A.K. Datta[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
[2]Manufacturing Technology & Engineering, Corning Inc., Sullivan Park, Corning, New York, USA
[3]Corporate Research, Corning Inc., Sullivan Park, Corning, New York, USA

Cellular ceramic substrates are extensively used for pollution control systems in vehicles. The manufacturing process of them can involve microwave drying. In this study, we describe the development of a modeling framework for the microwave drying process of these substrates. The transport model is implemented in COMSOL 3.5a using 4 PDEs: 1) Convection-Conduction for temperature, 2) Convection ...

Modeling the Collimator-Detector Scattering Using Stochastic Differential Equations and COMSOL

A. Jeremic[1], T. Farncombe[2], S. Liu[2], and Y. Abdul-Rehman[1]
[1]Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
[2]Department of Radiology, McMaster University, Hamilton, Ontario, Canada

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that uses gamma rays. It has been especially useful for bone scans, cardiac perfusion imaging, tumor scans and brain imaging. The main advantage of SPECT imaging is that it can target particular tissue receptors allowing one to focus on the imaging of the diseased tissue. In most cases Monte Carlo ...

Quasi-TEM Analysis of Multiconductor Transmission Lines Embedded in Layered Dielectric Region

S.M. Musa[1], and M.N.O. Sadiku[1]
[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the quasi-TEM two-dimensional (2D) approach for the analysis of multiconductor transmission lines interconnect in single and two-layered dielectric region using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is as suitable and effective as other ...

Effect of Antennae Polarization Relative to Tunnel Orientation on Electromagnetic Wave Scattering due to Underground Tunnels

A. Farid[1], and T. Raza[1]
[1]Civil Engineering, Boise State University, Boise, Idaho, USA

Illegal immigrants and smugglers frequently use underground tunnels to avoid border security and checkpoints. In addition, the threat of international terrorism has recently made the effort to detect tunnels a national security priority. No single technology and sensing modality is capable of detecting tunnels in all heterogeneous soils environments. The goal of this research is to study and ...

Electro Magnetic Wave Simulation in Fusion Plasmas

O. Meneghini[1], and S. Shiraiwa[1]
[1]Plasma Science and Fusion Center, Massachusetts Institute of Technology, Massachusetts, USA

Fusion is a form of nuclear energy which has impressive advantages from the point of view of fuel reserves, environmental impact and safety. If successful, fusion energy would ensure a safe, resource conserving, environmentally friendly power supply for future generations. In a world wide cooperation to achieve this goal, seven parties including Europe, Japan, Russia, USA, China, South-Korea and ...

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. A two-substrate mathematical model of microscale optical glucose sensors in ...

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water calorimetry. Since the dose distributions delivered by such beams are nonuniform, temperature signals ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Computational Modeling of Magnetorheological Elastomers Using Soft and Hard Magnetic Particles

J. Biggs[1], P. VonLockette[1], and S. Lofland[1]
[1]Rowan University, Glassboro, New Jersey

Magnetorheological Elastomers (MREs) are a composite that consist of magnetic micrometer sized particles suspended within rubber matrix filler. By placing this material within an external magnetic field during the rubber curing process, the poles of the particles are forced to align and form chains of particles within the matrix. These chains cause the MRE to change its stiffness properties when ...