Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Image-based Simulation of Electrical Impedance Techniques Applied on the Human Thorax for Cardio-pulmonary Applications

A. Harkara[1], R.M. Heethaar[2], R.T. Cotton[1], and F.K. Hermans[2]

[1]Simpleware Ltd., Exeter, UK
[2]VU University Medical Center, Amsterdam, Netherlands

For medical diagnostic purposes there is an increasing need for non-(or minimal) invasive techniques to measure all kinds of parameters that can provide insight in the functioning of cells, organs or organ systems. Currently, Impedance Cardiography (ICG) is used for measurements of the heart and Electric Impedance Tomography (EIT) is used for investigating lung tissue condition. The PDE is ...

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and application of mechanical forces to cells, etc. A COMSOL Multiphysics model is developed in 2D ...

Model of a Filament Assisted CVD Reactor

J. Brcka[1]

[1]TEL US Holdings, Inc., Technology Development Center, Albany, New York, USA

In this presentation we are dealing with the computational fluid model of a Filament Assisted Chemical Vapor Deposition (FACVD) reactor. Proposed strategy in this study involved several steps: (a) development a computational model for FACVD process capable to describe and obtain with reasonable accuracy all relevant phenomena occurring in the reaction chamber; (b) validation the computational ...

Multiphysics Simulation of Isoelectric Point Separation of Proteins Using Non-Gel Microfluidic System

A. Contractor[1], N. Xue[2], J.B.Lee[2], A. Balasubramanian[1], and G. Hughes[1]
[1]Lynntech, Inc., College Station, Texas, USA
[2]Micro Nano Devices and Systems (MiNDS) Laboratory, Department of Electrical Engineering, University of Texas at Dallas, Texas, USA

A portable device that can identify protein and peptides real time in complex biological systems such as human bodily fluids reliably and accurately is in high demand to properly diagnose and treat medical conditions. Lynntech has developed an innovative Polydimethylsiloxane (PDMS) based microfluidics system with a unique design utilizing multi-channel inlets and outlets for isoelectric point ...

Multiphysics Simulation of the Effect of Sensing and Spacer Layers on SAW Velocity

P. Zheng[1,4], D.W. Greve[2,4], and I.J. Oppenheim[3,4]

[1]Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[2]Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[3]Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[4]National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA

Surface acoustic wave gas sensors use a chemically sensitive resistive layer to detect gas concentration. The resistivity of the sensing material, the sensing layer thickness, and the spacer layer thickness all affect the surface wave propagation velocity. Existing analytic theory relates the change in velocity to various parameters. However some variables in this theory are not ...

MultiPhysics Simulation of Direct Double Helix Magnets for Charged Particle Applications

P. J. Masson[1], and R. B. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Charged particle beam manipulation requires magnetic dipoles for steering and quadrupoles for focusing. Conventional magnets are currently used leading to very large and heavy systems. Miniaturization of the optic magnets would enable the development of more affordable systems and potentially portable devices. The Advanced Magnet Lab, Inc. has developed a revolutionary magnet topology and ...

Rapid Prototyping of Biosensing Surface Plasmon Resonance Devices using COMSOL & Matlab software

J.J. Dubowski[1], and D.Carrier[1]
[1]Department of Electrical and Computer Engineering, Université de Sherbrooke, Quebec, Canada

We present a Finite Element Method simulation procedure that allows rapid development of prototype devices comprising novel self-referenced interference SPR (surface plasmon resonance) biosensing microstructures. The procedure takes advantage of  COMSOL Multiphysics and MATLAB software and their bi-directional link. The simulation is made using COMSOL RF Module, 2D harmonic propagation ...

Modeling of Shrinkage Behavior in Cement Paste Using Thermal-structural Interaction

T. Chen[1], and P.G. Ifju[1]
[1]University of Florida, Gainesville, Florida, USA

This paper describes using thermal structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain material propertiesfrom the complex geometry used in the tests. The finite element model is created in COMSOL ...

Electromagnetic Wave Simulation in Fusion Plasmas

O. Meneghini[1], and S. Shiraiwa[1]
[1]Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

COMSOL has been used to model the propagation of electromagnetic waves in fusion plasmas. For the first time, a finite element method has been used to solve the wave propagation for realistic fusion plasma parameters in the lower hybrid and ion cyclotron frequency ranges. Moreover, for lower hybrid waves, a new efficient iterative algorithm has been developed to take into account the dispersive ...

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...