Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Simulation of the Effect of Sensing and Spacer Layers on SAW Velocity

P. Zheng[1,4], D.W. Greve[2,4], and I.J. Oppenheim[3,4]

[1]Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[2]Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[3]Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[4]National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA

Surface acoustic wave gas sensors use a chemically sensitive resistive layer to detect gas concentration. The resistivity of the sensing material, the sensing layer thickness, and the spacer layer thickness all affect the surface wave propagation velocity. Existing analytic theory relates the change in velocity to various parameters. However some variables in this theory are not ...

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[1]Hamilton-Sundstrand
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to investigate the solidification of initially liquid copper from a chilled wall maintained at fixed temperature. ...

Finite Element Modeling of Transient Eddy Currents in Multilayer Aluminum Structures

V. Babbar[1], and T. Krause[1]

[1]Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada

Transient eddy current (TEC) technique is being developed for detection of flaws located at depth within multilayer aluminum structures. The present work involves finite element modeling using COMSOL Multiphysics software to simulate different types of probes by changing some of these parameters in an attempt to generate an output signal of optimum magnitude and shape. Some of the model results ...

Software Package for Modeling III-Nitride QW Laser Diodes and Light Emitting Devices

M. V. Kisin[1], R. G. W. Brown[1], and H. S. El-Ghoroury[1]
[1]Ostendo Technologies, Inc., Carlsbad, CA, USA

We present a modeling software package developed at Ostendo Technologies for analysis and design of semiconductor laser and light-emitting diodes. The current database of material parameters supports complete group of III-Nitride alloys used in visible spectrum applications and can be readily extended to all III-V compounds. Self-consistent multi-band quantum-mechanical model for carrier energy ...

Modeling of Shrinkage Behavior in Cement Paste Using Thermal-structural Interaction

T. Chen[1], and P.G. Ifju[1]
[1]University of Florida, Gainesville, Florida, USA

This paper describes using thermal structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain material propertiesfrom the complex geometry used in the tests. The finite element model is created in COMSOL ...

Rechargeable Battery for Hybrid Diesel-Electric Locomotive

Michael A. Vallance
Team Leader, GE Global Research

Over time, rechargeable batteries degrade and eventually stop working. You see some combination of declining capacity, rapid self-discharge, and reduced power. Degradation mode depends on battery design, but also on the application. Often, multiple physical processes contribute to degradation. In the laboratory, you can measure performance degradation. You can dissect the battery to discover ...

Modeling the response of photoacoustic gas sensors

S.L. Firebaugh[1], F. Roignant[2], and E.A. Terray[3]

[1]United States Naval Academy, Annapolis, Maryland, USA
[2]Polytechnique Nantes, Nantes, France
[3]Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

A fast, high-sensitivity detector is required for studies of environmentally relevant gases. Photoacoustic spectroscopy (PAS), an absorption spectroscopy technique in which absorption is detected as sound, is explored as a possible solution. A tuning-fork based PAS sensor is modeled using COMSOL. The model combines the acoustic and piezoelectric modules and also includes viscous damping. The ...

Modeling Two-Phase Electrophoresis

W. Clark[1], and M. Lindblad[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Two-phase electrophoresis is a separation method that combines aqueous two-phase partitioning with electrophoresis and has promise for large scale recovery of biological products. Aqueous two-phase systems formed by adding two polymers, like dextran and polyethylene glycol, to water provide some separation of dissolved species due to differences in solubility of solutes between the phases. ...

Model of a Filament Assisted CVD Reactor

J. Brcka[1]

[1]TEL US Holdings, Inc., Technology Development Center, Albany, New York, USA

In this presentation we are dealing with the computational fluid model of a Filament Assisted Chemical Vapor Deposition (FACVD) reactor. Proposed strategy in this study involved several steps: (a) development a computational model for FACVD process capable to describe and obtain with reasonable accuracy all relevant phenomena occurring in the reaction chamber; (b) validation the computational ...

Multiphysics Simulation of Isoelectric Point Separation of Proteins Using Non-Gel Microfluidic System

A. Contractor[1], N. Xue[2], J.B.Lee[2], A. Balasubramanian[1], and G. Hughes[1]
[1]Lynntech, Inc., College Station, Texas, USA
[2]Micro Nano Devices and Systems (MiNDS) Laboratory, Department of Electrical Engineering, University of Texas at Dallas, Texas, USA

A portable device that can identify protein and peptides real time in complex biological systems such as human bodily fluids reliably and accurately is in high demand to properly diagnose and treat medical conditions. Lynntech has developed an innovative Polydimethylsiloxane (PDMS) based microfluidics system with a unique design utilizing multi-channel inlets and outlets for isoelectric point ...