Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design and Simulation of a Cantilever Array for Fluid Flow Sensing Applications

K. Kavitha[1], Y. R. Manjoosha[1], C. S. Sukanya[1], K. Saranya[1], K. Chandra Devi[1], M. Alagappan[1], A. Gupta[1]
[1]Department of Biomedical Engineering, PSG college of technology, Coimbatore, TamilNadu, India

The biological hair-cell is a modular building block of a rich variety of biological sensors. These sensors are responsive to various mechanical properties like vibration, touch, gravitational forces, etc., especially flow. Using micro and nano-fabrication technology, an engineering equivalent of such sensors have been reported to be fabricated, imitating the structure and transfer function of ...

Scaling Effect in Air Gap MOSFET

R.V. Iyer[1], Vinay K.[1], A. R. Kamath[1], A. Goswami[1], A. Sharma[1], A. V. Joshi[1], A. Mishra[1], N. S. Pai[1], S. Chakraborty[1], Rakesh D.[1]
[1]PES Institute of Technology, Bangalore, Karnataka, India

This abstract addresses the effect of scaling in air gap MOSFETs and determination of functional relationship between scaling parameter and sensitivity, frequency response. The modelling of the MOSFET and its simulations has been carried out using COMSOL Multiphysics. An air Gap MOSFET in its simplest form can be imagined to be one obtained by replacing the dielectric in a MOSFET with air. The ...

Simulation of Flux Density in a Hybrid Coil SMES using COMSOL Multiphysics

S. Roy[1], G. Konar[1]
[1]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

Energy storage is an essential component for hybrid power system using non-conventional energy resources. Batteries, compressed air energy storage, pumped hydro plants etc. have been developed for storage. However, these have demerits like losses involved in energy conversion and time delay. Superconducting Magnetic Energy Storage (SMES) can be a good alternative as it stores electrical energy ...

Numerical Simulation of Flow Electrolysers: Effect of Various Geometric Parameters

P. Shukla[1], K. K. Singh[1], P. K. Gupta [1], S. K. Ghosh[1]
[1]Bhabha Atomic Research Centre, Trombay, Mumbai, India

Flow electrolysers find several applications in industry. They are used for production of metals and synthesis of chemicals, gases. Cleaning and preservation of old artifacts, electrolytic refining of metals, electrolytic winning of metals, alkaline water electrolysis, anodization, electrometallurgy, electroplating, electrolytic etching of metal surfaces are other industrial applications of flow ...

Modeling Micromechanics of Eigenstrain in Heterogeneous Media


Dr. Tewari is an Associate Professor in the Department of Mechanical Engineering at IIT Bombay. Prior to this he was a staff researcher at the General Motors Global R&D Center, Bangalore. He graduated with a B.Tech degree from IIT Kanpur followed by an MS and Ph.D. from Georgia Institute of Technology, Atlanta, USA. His area of research is in mathematical models for microstructural-mechanics. He ...

Multiphysics Modeling and Simulation of MEMS based Variometer for Detecting the Vertical Speed of Aircraft in Avionics Applications

K. Umapathi[1], K. Sukirtha[2], C. Sujitha[2], K. A. Noushad[2], Venkateswaran[1], R. Poornima[1], R. Yogeswari[1]
[1]United Institute of Technology, Coimbatore, Tamil Nadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two micro electrodes. The micro diaphragm is placed on one of the electrode. As the aircraft changes altitude, the ...

Design and Simulation of Sensors to Detect Methanol

C. K. Subramaniam[1], Muthuraja[1]
[1]School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

The Direct Methanol Fuel Cell (DMFC) working is dependent on the concentration of methanol in water before it is introduced in the anode. DMFC has a high energy density when generating electrical power from fuel, and is an attractive power source for portable devices. A fundamental limitation in DMFC technology is methanol crossover. In this process methanol diffuses from the anode through the ...

Effect of Conductivity and Viscosity in the Velocity Characteristics of a Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes

P. Parikh[1], A. Sethi[1], S. Benedict[1], D. N. Prasad[1], B. Mallik[2], S. Kapur[1], S. Deb[1], S. Banerjee[1]
[1]BITS Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
[2]Megnadh Saha Institute of Technology, Kolkata, India

Electrokinetic transport of fluids has been investigated both experimentally and numerically due to its various applications in microfluidic devices [1-5]. These devices offer the advantage of transporting fluids or particles to specific locations without the aid of mechanical components. The device by Green et al consists of a symmetric arrangement of CPE subjected to an AC potential [6-8]. The ...

Flow of Dry Foam in a Pipe

M. Divakaran[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Due to the coupling of foam flow with foam generation step, the earlier studies on foam flow have not led to consistent results. An increase in flow rate to obtain ?P vs. Q data changes the foam under investigation itself. The controlled experiments carried out earlier in our group show that ?P increases with flow rate as Q^2/3, a weaker dependence than that known for laminar flow or plug flow ...

Design of Microneedle Array for Biomedicine

N. Mane[1], A. Gaikwad[1]
[1]Department of Instrumentation, Cummins College of Engineering, Pune, Maharashtra, India

Micro electro-mechanical system (MEMS) is rapidly growing area of interest for a broad spectrum of applications. One particularly fast-growing area is biomedical applications for micromaching technologies. One application of interest to the biomedical industry is the development of microneedles. MEMS technology brings new means for biomedicine field. Patch-based transdermal drug delivery offers ...