Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal Analysis of Packaged Deep Ultraviolet LEDs

A. Dobrinsky[1], M. Shatalov[1], M. Shur[1], R. Gaska[1]
[1]Sensor Electronic Technology, Columbia, SC, USA

Deep Ultraviolet Light Emitting Diodes (DUV LEDs) are presently operating at a relatively low efficiency, thus large amount of LED driving power is dissipating in heat. Thermal heating degrades LED performance and decreases LED’s lifetime. The degradation of DUV LED devices with temperature increase makes thermal management a key issue for DUV LEDs. We present a thermal analysis of DUV LED ...

Development of the Service Frame for SBS Tracker GEM and TENDIGEM Development

F. Noto[1], E. Cisbani[2], F. Librizzi[1], F. Mammoliti[3], C.M. Sutera[1]
[1]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]Istituto Nazionale Fisica Nucleare - Sezione di Roma, Roma, Italy; Istituto Superiore di Sanità, Roma, Italy
[3]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm² without noticeable aging and to provide the sub-millimeter resolution on working chambers up to 45x45 cm² [1]. A new GEM tracker is under development for the upgrade of the SBS spectrometer in Hall A at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber ...

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of modulation of peptide function. We push the neuropeptide galanin through organotypic hippocampal slice ...

Electromagnetic Release Process for Flexible Electronics

G. Coryell[1][,][2]
[1]School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
[2]Chemistry Department, United States Naval Academy, Annapolis, MD, USA

Flexible electronics are temporarily affixed to a rigid carrier such as glass or silicon prior to device fabrication to facilitate robotic handling of the device, but also to allow optical lithography to stay within overlay design registration budget; without the rigid carrier, a freestanding flexible substrate such as polyimide would distort unacceptably during even minor temperature excursions ...

COMSOL Multiphysics and The Library of Babel

William T. Vetterling, Ph.D., is a Research Fellow of ZINK Imaging, Inc. and manager of its Image Science Laboratory in Bedford, Massachusetts. He received his Ph.D. in condensed-matter physics from Harvard University, and joined the Harvard faculty in 1976. In 1984 he began working with Polaroid Corporation, where he remained for over 20 years performing research and modeling studies of imaging ...

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

Establishing Absorbed Dose Thresholds for Nonlinearities in Water Calorimetry

R.E. Tosh[1], H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The technique of water calorimetry for primary-standard dosimetry of radiotherapy-level ionizing radiation is well established at national metrology institutes around the world, where such a direct realization of absorbed dose establishes the basis for calibrating instruments used for dosimetry in medical settings. The typical calorimeter system uses miniature thermistor beads to measure ...

Low Pt Cathodes for High Performance PEMFCs: Modeling and Experiments

F. Daouda[1], J. Hamelin[1], P. Benard[1], S. Kumar Natarajan [1]
[1]Insitut de recherche sur l'hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada

We present a novel multi-layered electrode fabrication technique for polymer electrolyte membrane fuel cells (PEMFCs). This method consists of alternate layers of Pt deposition (0.05 mg/cm²) by sputtering on the painted multi-walled carbon-Nafion layer (CNL) with larger concentration of catalyst particles closer to the membrane. Parametric models were developed and validated by experimental ...

Transient RF Heating of a Conductive Implant: Coupled Electromagnetic/Thermal Simulation and Experimental Validation

A. Leewood[1], D. Gross[1], J. Crompton[2], S. Yushanov[2], O. Simonetti[3], Y. Ding[3]
[1] MED Institute Inc., West Lafayette, IN, USA
[2] AltaSim Technologies, Columbus, OH, USA
[3] Ohio State University, Columbus, OH, USA

The purpose of this work was to establish a reliable radio frequency (RF) heating simulation which directly provides transient temperatures for medical devices with high geometric fidelity. These temporal results of localized temperatures can be used to determine conditions for safety of medical devices in the magnetic resonance (MR) environment. Information from this work will directly benefit ...

SWRO (Desalination) Biofilm Remediation Technology Utilizing Centrifugal Micro-Fluids

E.M. Glenn[1]
[1]University of California, Irvine, CA, USA

Water-and-energy supply is a global issue of paramount importance. The demand for safe potable water is quickly exceeding the limits of natural regional water resources. Like oil, water is a finite resource; unlike oil, however, water has no alternatives. Water, energy and their environmentally sound solutions are interrelated; and of all the present-day environmental problems, those related to ...