Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermo-Mechanical Analysis of Composite Material Exposed to Fire

A. Davidy[1]
[1]IMI, Ramat Hasharon, Israel

This paper presents thermo-mechanical models for predicting the strength of polymer laminates loaded in tension or compression exposed to one-sided radiant heating by fire. The first part is the fire simulation where the FDS model is utilized. The FDS model generates a solution of several state variables, such as pressure, temperature, heat, velocity vector. In the second part, COMSOL heat ...

Numerical Modeling and Performance Optimization Study of a Diaphragm Pump for Medical Application

I. Lupelli[1], P. Gaudio[1], A. Malizia[1], R. Quaranta[1]
[1]Department of Industrial Engineering, University of Rome “Tor Vergata”, Roma, Italy

In this contribution we present the results of the numerical modeling and performance optimization study of a diaphragm pump for drug infusion. The main objective is to develop a numerical model that replicates the pumping cycle (400ms) and also provides indications about the variation of pumping performance as consequence of the variation of the chamber-diaphragm system geometry, diaphragm ...

Theoretical Investigation of CMH Lamps Ignition Properties in Ar/Hg Penning Gas Mixtures

Sz. Beleznai[1], I. Maros[2]
[1]Budapest University of Technology and Economics, Budapest, Hungary
[2]General Electric Lighting, GE Hungary KFT, Budapest, Hungary

Two-dimensional plasma transport model was developed in COMSOL Multiphysics Plasma Module to investigate fundamental issues in ceramic metal halide (CMH) lamps starting using Ar/Hg penning gas mixture. The intent of this work is to provide insight into possible design rules that might be applied to the improvement of start-up in moderate pressure metal halide lamps. The model gives a complete ...

Multiphysics Simulations in the Ultrasonic Industry

P.A. Colombo[1]
[1]DepQuest, Dalmine, Italy

This work focuses on the application of multiphysics finite element simulations in the manufacturing and application of high power ultrasonic machines. Industries providing big power ultrasonic solutions as in cleaning, welding, sonochemistry and cutting fields, already apply the finite element simulation approach, in the structural mechanics flavor, in the design and optimization of ultrasonic ...

Numerical Simulation of Recovery of Light Oil by Medium Temperature Oxidation in Porous Media

N. Khoshenvis Gargar[1], A. Mailybaev[2], D. Marchesin[2], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands
[2]Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, Brazil

One of the methods to recover oil from medium and low viscosity in complex reservoirs uses air injection leading to oil combustion. In this case the oxygen in the air burns the heavier components of the oil, generating a heat wave leading to vaporization of lighter components. In this work, we consider a simple model for air injection in light oil reservoir containing only one component in dry ...

A Multiscale-Multiphysics Model for Axon Pathfinding Simulation, the Example of the Olfactory System

G. Naldi[1], G. Aletti[1], P. Causin[1]
[1]Dipartimento di Matematica ‘F. Enriques’, Università degli Studi di Milano, Milano, Italy

In the developing embryo, neurons form connections by projecting axons to appropriate target areas. The projection process includes neurite elongation, resulting from the assembly of new cytoskeletal material at the free end of the axon, a complex cascade of steering decisions, driven by biomechanical properties of the surrounding environment and by signals in it. In this work we focus on the ...

Magnetic and Circuital Modeling of a Low Harmonic Pollution Three Phase Transformer

E. Scotoni[1], C. Tozzo[2], D. Zoccarato[1], F. Paganini[1]
[1]TMC Italia, Busto Arsizio, Italy
[2]COMSOL, Brescia, Italy

A three phase transformer with very low harmonic pollution transferred back to power line is here presented. In fact, thanks to the described setup, intermediate harmonics (5th and 7th) are not going out back to the power line feeding the primary. These results has been extensively validated versus measurements performed on produced and shipped machine. With these results, TMC is then featuring ...

Design Variability of a MEMS Resonator

H. van Halewijn[1], J. Beek[2]
[1]Physixfactor, Nijmegen, The Netherlands
[2]NXP, Eindhoven, The Netherlands

It is important in designing micro-electromechanical systems (MEMS) to reduce the variability of design parameters caused by manufacturing tolerances and material properties. At NXP COMSOL has been used to investigate many aspects of the design, such as the Q-factor, anchor losses, thermal behavior, parasitic capacitance of the resonator and more. Quartz crystal resonators are used in many ...

Flare System Pressure Drop Calculations Using COMSOL

K. Alhazza[1], B. Albusairi[1], H. Kamal[1], H.M.S. Lababiedi[1], A.A. Abbas[2]
[1]Kuwait University, Kuwait City, Kuwait
[2]Petrochemical Industries Company, Kuwait City, Kuwait

COMSOL Multiphysics has been used to validate and check the design of a header transporting ammonia gases released from pressure safety valves (PSVs) to the tip of the flare. The header is part of a dedicated flaring system to contain emissions from ammonia storage tanks. The two main challenges are the low relief pressure and high capacity of the system. Another difficulty is the high relief ...

Thermal and Fluid Dynamics Studies Applied to Steel Industry

G. Tracanelli[1], M. Culos[1]
[1]Studio di Ingegneria Industriale Tracanelli, San Vito al Tagliamento, Italy

The energy pay back is one of the most interesting field especially in the steel industry where this contribution is strictly connected to steams and emissions inside and outside the plant. Perhaps, this application is sometimes disturbed by a strong variation of emissions (\"off gas\"). One example is the arc furnace where the process is very discontinuous and there are many fluctuations in the ...