Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Operation of an Electromagnetic Trigger with a Short-Circuit Ring

D. Križaj[1], Z. Top?agi?[1], B. Drnovšek[1]
[1]Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

Numerical simulation of an electromagnetic trigger with a short-circuit ring is presented. The main goal of inclusion of a short-circuit ring in an electromagnetic trigger is to develop an element suitable for use in a circuit breaker with capabilities of selective switching. The main problem to be solved is vibration of a moving contact due to zero electromagnetic force between the anchor and ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

Conductivity Estimation of Breast Cancer Using COMSOL® Modeling of Microwave Scattering and Frechet Mean Estimate of Covariance - new

A. Jeremic[1], E. Khoshrowshahli[2]
[1]Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada
[2]Biomedical Engineering, McMaster University, Hamilton, ON, Canada

Breast cancer detection is one of the most important problems in health care and it is second most frequent cancer according to WHO. It is recommended that women over fifty or even younger in some cases do a screening test every two years. Besides clinical breast examination, there are number of imaging methods used for this purpose, such as mammography, ultrasound and MRI. Among them, ...

Electromagnetic Processing from AC to DC Field and Multiphysics Modeling: a Way for Process Innovation

M. Dumont [1], R. Ernst [2], Y. Fautrelle [2], J. Etay [2]
[1] Emdpi Solutions-JAM, France
[2] Simap, France

Examples of Electromagnetic processes are presented: (1) cold crucible, (2) electromagnetic pump, (3) DC electromagnetic brake. A combined approach by using multiphysics modeling with Comsol and experimental validation is used in order to give some guidelines for process improvement and integration at industrial scale. A time-dependent 2D or 3D multiphysics electromagnetic fluid mechanics ...

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion electrical machines. The performance of a high speed LIM is severely degraded by "End Effects". The paper ...

Modeling a 3D Eddy Current Problem Using the Weak Formulation of the Convective A-phi Steady State Method

J. Bird[1]

[1]University of North Carolina, Charlotte, North Carolina, USA

A 3D model of a magnetic rotor both rotating and translationally moving at high-speed over a conductive guideway is modeled in steady-state using the convective A*-Φ formulation. The presence of the magnetic rotor (source field) is incorporated into the formulation via the boundary conditions. This type of problem is difficult to model using existing commercial packaged electromagnetic ...

Numerical Study of a DC Electromagnetic Liquid Metal Pump: Limits of the Model

N. Kandev[1]
[1]Institut de recherche d'Hydro-Québec, Shawinigan, QC, Canada

This work presents the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of an electromagnetic DC pump for liquid metal using a rectangular metal flow channel subjected to an externally imposed transversal inhomogeneous magnetic field. In this study. 3D numerical simulation based on the finite element method was carried out using the computer package COMSOL Multiphysics 3.5a. The ...

Comparison of Magnetic Barkhausen Noise Tetrapole and Dipole Probe Designs

P. R. Underhill [1], T. W. Krause [1],
[1] Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

COMSOL Multiphysics® software is used to understand the difference in behaviour of two Magnetic Barkhausen Noise (MBN) probes. The dipole probe has to be physically rotated to sample the angular distribution of the MBN. The tetrapole probe uses vector superposition to rotate the magnetic field without probe motion. Using the AC/DC Module and non-isotropic material properties, it was found that, ...

COMSOL Aided Design of an Extraction Pipe for the Electron Beam from a Plasma Focus Device

M. Valentinuzzi[1], E. Ceccolini[1], D. Mostacci[1], M. Sumini[1], F. Rocchi[2]
[1]Montecuccolino Nuclear Engineering Laboratory, University of Bologna, Bologna, Italy
[2]UTFISSM-PRONOC, ENEA, Bologna, Italy

The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for IORT (Intra-Operative Radiation Therapy) applications. A Plasma Focus device is being developed to this aim. The electron beam is driven through an electron pipe made of stainless steel to impinge on a 50 ?m brass foil, where conversion X-rays are generated. Electromagnetic forces in the ...

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...