Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimal Utilization of Railgun

N. R. Mahajan[1], S. B. Patel[1], Z. A. Khan[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Andhra Pradesh, India

Railgun is an electrically-powered gun that accelerates a conductive projectile along magnetic metal rails. Various factors increase the projectile velocity. Each method has its own advantages and disadvantages. While increasing the projectile velocity, one has to keep in mind the longevity of the rail guns for practical use . Railguns are often damaged after few uses due to the extreme working ...

The Fast Model for Ionic Wind Simulation

A. Samusenko[1], Yu. Stishkov[1], P. Zhidkova[1]
[1]Saint Petersburg State University, Research and Educational Center “Electrophysics”, St Petersburg, Russia

Ionic wind is the gas flow induced by the corona discharge. Ions produced by corona are accelerated by electric field and transfer their momentum to neutral molecules. Using ionic wind one can convert electric energy to kinetic energy of air flow almost directly. The phenomenon of ionic wind finds applications in electrostatic precipitators and ionizers. It is difficult to solve the complete ...

Design and Optimization of Power Cable Accessories Using COMSOL Multiphysics®

A. Lewarkar [1], D. Bergsma [1], S. Madhar [2],
[1] E&D Department, Lovink Enertech B.V., Terborg, Netherlands
[2] Electrical Engineering Department, Delft University of Technology, Delft, Netherlands

Power cable manufacturing is limited by the maximum length of cable that can be produced and stored on cable drums. This creates a need or rather an opportunity for a cable accessory, namely 'Cable Joints'. Joints are an impeccable component in the power cable network that necessitate extreme care in their design and installation in order to facilitate a smooth connection between two cable ends ...

Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields

S. Khushrushahi, and M. Zahn
Massachusetts Institute of Technology, Cambridge, MA, USA

A fully filled sphere of ferrofluid has constant demagnetizing factors in all three Cartesian directions such that when subjected to a uniform external rotating magnetic field the internal field is also uniform, and ultrasound measurements give no observable flow. Non-uniform magnetic fields or a non-uniform distribution of susceptibility are necessary conditions for ferrofluid spin-up flows in ...

Surface Charge Modulated Ionic Conductance of Closed Solid State Nanopore Biosensors

H. Ghosh [1], C. Roychaudhuri [1],
[1] Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal, India

This paper explores surface charge modulated ionic conductance of closed solid-state nanopores for explaining significant nonlinear length dependent variation in ionic current in such nanopore biosensors with a view to design improved sensors without increasing fabrication cost for biomolecule detection. Although extensive work has been done in modeling open pore conductance, closed nanopores ...

Investigation of a Hybrid Winding Concept for Toroidal Inductors Using 3D Finite Element Modeling

H. Schneider[1], T. Andersen[1], J. D. Mønster[1], M. P. Madsen[1], A. Knott[1], M. A. E. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested experimentally to verify the simulation results. Finally, the COMSOL Multiphysics® LiveLink™ to ...

Current Density Distribution for a Full Scale Industrial Alluminization Process

A. Giaccherini [1], S. Martinuzzi [2], E. Berretti [1], A. De Luca [3], A. Lavacchi [4], S. Caporali [2], M. Innocenti [3]
[1] Chemistry Department, University of Firenze, Firenze, Italy
[2] Consorzio INSTM, Firenze, Italy
[3] Chemistry Department, University of Firenze, Firenze, Italy
[4] Institute of Chemistry of Organometallic Compounds, CNR, Firenze, Italy

Respect to the previous approaches, in this communication the electrochemical and chemical kinetics as well as the transport phenomena, were modelled at very high level of theory, taking into account all the parameters affecting the galvanic process, including turbulent convection fields. In particular, we considered tertiary current distribution, chemical equilibria and turbulence models, such ...

Finite Element Method based Investigation of IPMSM Losses

M. Schmidtner [1], C. Markgraf [1], A. Frey [1],
[1] University of Applied Sciences, Augsburg, Bavaria, Germany

INTRODUCTION: This paper investigates the design of IPMSM as drive motor for an electric race car in the competition called Formula Student. A key parameter for electrical motor is the power density which is very important for the performance of such race vehicles [1] to keep the overall mass small at high power. Furthermore, to run the motor at high power and to prevent it from overheating due ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...

Design of Dielectrophoretic Cell Traps in Microfluidics Devices Using COMSOL Multiphysics® Software

L. Velmanickam [1], K. Nawarathna [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

The isolation of target cells from biological samples such as serum, urine or blood in high-throughput manner without contamination with other cells is the starting point of developing effective therapy for many diseases. Currently available methods for cell isolation/separation require extra labeling. Furthermore, separating target cells using current methods do not produce pure target cell ...