Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electromagnetic Force Simulations on a Reaction Sphere for Satellite Attitude Control

L. Rossini[1], E. Onillon[1], O.Chetelat[1], and C. Allegranza[2]
[1]Centre Suisse d’Electronique et Microtechnique, Switzerland
[2]ESA/ESTEC, The Netherlands

In the frame of an ESA project, CSEM in collaboration with other partners has developed an innovative Attitude Orbit Control System concept that relies on a Reaction Sphere. We propose to use one unique magnetic bearing Reaction Sphere whose spin axis and angular velocity can be positioned by dedicated control. The design is based on a 3-D permanent magnet motor obtained with a multi pole rotor ...

Current Distribution and Magnetic Fields in Complex Structures Using Comsol Multiphysics

S. F. Madsen, and C. Falkenstrøm Mieritz
Highvoltage.dk ApS
Lejre, Denmark

The present paper presents numerical calculations of the magnetic fields and the current distribution within a wind turbine nacelle. The results are used by control system engineers designing panels and cables, who must ensure that the immunity of the equipment complies with the environment within the turbine. Since the release of the International standard concerning lightning protection of ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Coupled Magnetodynamic and Electric Circuit Models for Superconducting Fault Current Limiter

L. Graber[1], J. Kvitkovic[1], T. Chiocchio[1], M. Steurer[1], S. Pamidi[1], and A. Usoskin[2]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL
[2]Bruker Energy & Supercon Technologies Inc., Billerica, MA

Finite element models, which include the shielding characteristics of superconductors are often complex and would currently not allow us to study 3D models of devices of complex geometry such as fault current limiters. We propose instead a model based on variable electric conductivity, which is suitable to simulate magnetic field characteristics of inductive superconducting fault current ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Modeling Directional Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski, and J. Maguire
Naval Undersea Warfare Center/Div. Npt. , Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from a two arm Archimedes spiral coil. The performance of particular interest is knowledge of the radiated magnetic field H and electric field E in the neighborhood of the coil. The results in this paper illustrate how COMSOL is used to solve for the radiated ...

Electromagnetic Characterization of Big Aperture Magnet Used in Particle Beam Cancer Treatment

J. Osorio Moreno[1], M. Pullia[1], C. Priano[1]
[1]Fondazione CNAO, Pavia, Italy

Resistive magnets are one of the principal components of ion medical accelerator systems used in heavy ion cancer treatment. To fulfill medical requirements, like the size of irradiation field and an uniform dose distribution, some magnets of the transport beam line may require large aperture and a large region where the magnetic field is within specifications (good field region). After a ...

FEM Modeling of Electric Field and Potential Distributions of MV XLPE Cables Containing Void Defect

M. Alsharif[1], P. Wallace[2], D. Hepburn[2], C. Zhou[2]
[1]Department of Physics, Faculty of Arts, Sebha University, Sebha, Libya
[2]School of Engineering & Computing, Glasgow Caledonian University, Glasgow, United Kingdom

Introduction: Failure in cable insulation is generally preceded by a degradation phase that may last several years. A significant cause of cable system failures is the breakdown of electrical insulation between the electrodes. The operational stresses that occur in cable insulation which include thermal, mechanical and electrical effects will vary with time and can cause degradation due to the ...

Studying PEM Fuel Cells using Equation Based Simulation

J. Blackburn [1], N. McCartney [1],
[1] National Physical Laboratory, London, UK

We present computer simulation results for PEM fuel cells using COMSOL Multiphysics® software. We have developed novel PDE equations at NPL from first principles and these are more realistic than models typically used in literature. The theory includes Maxwell-Stephan and Nernst-Planck equations for the diffusion and electrochemistry as well as equations governing electrostatic and stress/strain ...

Modeling a Brushless DC Motor for an Advanced Actuation System using COMSOL Multiphysics® Software

K. S. Shinoy [1], B. Sebastian [1],
[1] Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, India.

This paper presents the design and analysis of a high power radial flux Brushless DC motor for electro-mechanical actuation system. The motor is used for driving an electro-mechanical actuator of 20 ton capacity. Surface mounted, radially magnetized permanent magnet design is mostly preferred due to its ease of control, high efficiency and low maintenance. The motor under consideration is having ...