Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of a Differential Sensor in Eddy Current Non-destructive Evaluation

A. Rosell[1], and G. Persson[2]
[1]Volvo Aero Corporation, Trollhättan, Sweden
[2]Chalmers University of Technology, Göteborg, Sweden

Interaction between the probe and a defect in eddy current non-destructive evaluation is studied. Evaluation of sensor signal response is the basis for the calculation. In this work a differential sensor is considered and the problem regarded here is problem 8 from the testing of electromagnetic analysis methods (TEAM) workshops. The truncation, referring to the position of the outer ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

Finite Element Modeling of Eddy Current Probes for CANDU® Fuel Channel Inspection

M. S. Luloff [1], T. W. Krause [2], J. Morelli [1],
[1] Queen's University, Kingston, ON, Canada
[2] Royal Military College of Canada, Kingston, ON, Canada

CANDU® reactor pressure tubes (PT) contain D2O, which is used as a moderator. Surrounding the PTs are gas-filled Calandria Tubes (CT), which thermally isolate the PTs from the moderator surrounding the fuel channels. If the garter springs move apart, the PT will sag into the CT. Under contact conditions, the thermal gradient between the hot PT and cold CT accelerates the ingress of deuterium ...

Comparison of Magnetic Barkhausen Noise Tetrapole and Dipole Probe Designs

P. R. Underhill [1], T. W. Krause [1],
[1] Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

COMSOL Multiphysics® software is used to understand the difference in behaviour of two Magnetic Barkhausen Noise (MBN) probes. The dipole probe has to be physically rotated to sample the angular distribution of the MBN. The tetrapole probe uses vector superposition to rotate the magnetic field without probe motion. Using the AC/DC Module and non-isotropic material properties, it was found that, ...

Electromagnetic Processing from AC to DC Field and Multiphysics Modeling: a Way for Process Innovation

M. Dumont [1], R. Ernst [2], Y. Fautrelle [2], J. Etay [2]
[1] Emdpi Solutions-JAM, France
[2] Simap, France

Examples of Electromagnetic processes are presented: (1) cold crucible, (2) electromagnetic pump, (3) DC electromagnetic brake. A combined approach by using multiphysics modeling with Comsol and experimental validation is used in order to give some guidelines for process improvement and integration at industrial scale. A time-dependent 2D or 3D multiphysics electromagnetic fluid mechanics ...

微波干燥电磁场、多相传输及大变形三维耦合模型

张春 [1], 朱铧丞 [1], Ashim Datta [1],
[1] 四川大学,成都,四川,中国

引言:微波干燥过程涉及多物理场的耦合,物理过程十分复杂。不仅有被加热物质的形态改变,还有气态、液态和固态三相的相互作用。为了更清楚地理解微波干燥过程,本模型将电磁场、多相流和物理变形用相应的方程耦合到一起建模分析,并用相应的物理参数表征微波干燥过程。(图1) COMSOL Multiphysics® 的使用:借鉴微波加热接口土豆模型,添加气体和固体传热接口以及自定义方程,用方程和参数实现多物理场耦合。实验模型中,干燥物为土豆,且被视为多孔弹性介质。物质变形用相应的矩阵来表征。 结果:在仿真结果的基础上,利用家用微波炉干燥土豆,设计实验,并测量了微波干燥过程中的重要物理参数,如温度、水分和形变。(图2,图3) 结论:该仿真模型和实验基本吻合 ...

Heat-Sink Solution through Artificial Nanodielectrics for LED Lighting Application

N. Badi[1], R. Mekala[2]
[1]Department of Physics, Center for Advanced Materials, University of Houston, Houston, TX, USA
[2]Department of Electrical & Computer Engineering, University of Houston, Houston, TX, USA

Thermally conducting but electrically insulating materials are needed for heat-sink LED lighting applications. We report on a cost effective and innovative method based on creating core-shell nanoparticles in polymer with aluminum (Al) nanoparticles as the high thermal conductivity core and ultrathin aluminum oxide (Al?O?) as a capping shell. The solid oxide shell around the Al core prevents ...

Preliminary Design of the New HI-LUMI LHC Beam Screen

M. Morrone [1],
[1] CERN, Geneva, Switzerland

The high luminosity large hadron collider (HL-LHC) project aims at increasing the integrated luminosity by a factor of 10 from its original value (from 300 to 3000 fb-1) leading to the potential extension of scientific discoveries. To attain this goal, important upgrades will take place in the LHC by 2024 including the installation of new superconducting magnets in which new beam screens will be ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...

Simulating Superconductors in AC Environment: Two Complemetary COMSOL Models

R. Brambilla[1] and F. Grilli[2]
[1]ENEA - Ricerca sul Sistema Elettrico S.p.A., Milano, Italy
[2]Karlsruhe Institute of Technology, Karlsruhe, Germany

In this paper we present a summary of our work on numerical modeling of superconductors with COMSOL Multiphysics®. We discuss the two models we utilized for this purpose: a 2-D model based on solving Maxwell equations and a 1-D model for thin conductors based on solving the integral equation for the current density distribution. The latter is useful for modeling second generation High ...