Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

3D Power Inductor: Calculation of Iron Core Losses

L. Havez[1], E. Sarraute[1]
[1]LAPLACE, Toulouse, France

The work proposed in this paper deals with the consideration of 3D geometric effects to evaluate the iron losses in magnetic devices used in power electronics. To carry out this work, we rely upon two existing models of iron losses per unit volume calculation ("Steinmetz") currently used in power electronics. We coupled these two models with a finite element magnetic field calculation software, ...

A 2D Model of a DC Plasma Torch

B. Chine' [1],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Plasma torches are used in processing of materials as well as in the energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be initiated by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the plasma is obtained by heating, ionizing and expanding a working gas, introduced into the chamber of the torch ...

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

Experimental Validation of Induction Heating of MS Tube for Elevated Temperature NDT Application

B. Patidar [1],
[1] Bhabha Atomic Research Centre, Mumbai India

Induction heating is multiphysics process, which includes electromagnetic induction and heat transfer. Both the physics are nonlinearly coupled with each other. In this paper, mathematical modeling of induction heating of MS tube for elevated temperature NDT application is presented. Mathematical modeling of electromagnetic field is done by using magnetic vector potential formulation. Heat ...

Calculation of Cable Parameters for Different Cable Shapes 

H. Lorenzen[1], J. Timmerberg[1], and S. Mylvaganam[2]
[1]Department of Electrical Engineering, UAS OOW, Wilhelmshaven, Germany
[2]Department Technology/Engineering, Telemark University College, Porsgrunn, Norway

Efforts involving simulation of  transmission line networks necessitate the accurate values of the parameters of the lines. In this paper, as an attempt in estimating such parameters, the parameters of high voltage asymmetric power lines are calculated. In the process of estimation, the three phase equivalent circuit model is used. The resistance and inductance of such lines are dependent ...

Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL Multiphysics®

M. Madsen[1], J. Mønster[1], A. Knott[1], M. Andersen[1]
[1]Technical University of Denmark, Lyngby, Denmark

This paper describes the implementation of a complete design tool for design, analysis, optimization and production of PCB embedded inductors. The paper shows how LiveLink™ for MATLAB® and COMSOL Multiphysics® make it possible to combine the scripting and calculation power of MATLAB with the simulation power of COMSOL Multiphysics in order to get an extremely efficient tool for inductor design. ...

Prediction of Transformer Core Noise - new

R. Haettel[1], A. Daneryd[1], M. Kavasoglu[1], C. Ploetner[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]ABB Transformers, Varennes, QC, Canada

Today, low noise is a mandatory feature for power transformers to comply with customer specifications and environmental regulations. Therefore, it is crucial to develop sound prediction tools with sufficient accuracy to avoid overkill margins in design and costly modifications after transformer completion. The paper will focus on core noise which is a typical multiphysics phenomenon involving ...

Prediction of the Loudspeaker Total Harmonics Distortion Using COMSOL Multiphysics® Software

F. Malbos [1], M. Bogdanski [2], M. Strauss [2],
[1] Harman, Paris, France
[2] Harman Becker Automotive Systems, Straubing, Germany

For automotive applications, simulation methods are used to get the best audio acoustic performance. Because a loudspeaker is a non linear device, the sound pressure in the vehicle includes harmonics which are mainly created by the force factor, suspension stiffness and voice coil inductance of the loudspeaker. This paper shows how to simulate those non linear components using COMSOL ...

Magnetorheological Fluid Based Braking System Using L-shaped Disks - new

M. Hajiyan[1], S. Mahmud[1], H. Abdullah[1]
[1]School of Engineering, University of Guelph, Guelph, ON, Canada

This paper presents a novel design of multi-disks Magnetorheological braking system (MR brake) for automotive application. Magnetic saturation in both electromagnetic core and MR fluid is considered in this paper. The electromagnetic analysis of the proposed configuration is carried out using Finite Element based COMSOL Multiphysics® software (AC/DC Module). The system geometry, created using ...

Modeling the Effect of a Water Tree Inside a Tape Shield and Concentric Neutral Cables - new

K. Burkes[1,2], E. Makram[2], R. Hadidi[2]
[1]Department of Electrical Engineering, Clemson University, Clemson, SC, USA
[2]Savannah River National Lab, R&D Instrumentation, Aiken, SC, USA

COMSOL Multiphysics® software is used to model a water tree in tape shield and concentric neutral cables. It allows for the effect on electric field intensity at the tip of the water tree and electric potential due to the water tree to be better understood. Also, COMSOL is used to calculate the resistance and capacitance of a section of cable with a water tree as it grows across the insulation. ...