Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electric Field Calculations for AC and DC Applications of Water Controlled Cable Termination - new

T. Karmokar[1], R. Pietsch[1]
[1]HIGHVOLT Prüftechnik Dresden GmbH, Dresden, Sachsen, Germany

The computation of electric field strength is the state-of-the-art technique for designing and optimizing High-Voltage (HV) equipment. In this research, the equipment under analysis is Cable Termination (CaTr) which is used to apply high-voltage (75 kV – 800 kV AC) on the cable to be tested (Figure 1). The CaTr is based on the principle of linear electric field control using deionised water with ...

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

Design of ESS-Bilbao RFQ Linear Accelerator

J. L. Muñoz [1], D. de Cos [1], I. Madariaga [1], I. Bustinduy [1]
[1] ESS-Bilbao, Bilbao, Spain

The design of ESS-Bilbao RFQ (RadioFrequency Quadrupole) linear accelerator cavity using COMSOL Multiphysics is presented. The work includes geometry definition, electrostatics, electromagnetic and thermomechanical coupled simulations. The main part of the work corresponds to the electromagnetic design. Geometry construction and meshing is very challenging, involving large models (3 m long) with ...

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...

Failure Modes of Underground MV Cables: Electrical and Thermal Modelling

P.A. Wallace[1], M. Alsharif[1], D.M. Hepburn[1], and C. Zhou[1]
[1]Department of Energy Systems Engineering, Glasgow Caledonian University, Glasgow, United Kingdom

Two simulations of the performance of a Paper Insulated Lead Covered (PILC) Medium Voltage (MV) underground cable are presented. The first presents the thermal response of a cable, over seven days, to a realistic load with a diurnal variation. The second concentrates on the variation of the electric field stress within the cable over a single AC cycle. The effects of a void defect within the ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Magnetic Levitation System for Take-off and Landing Airplane – Project GABRIEL

K. Falkowski[1], K. Sibilski[1]
[1]Wroclaw University of Technology, Wrocław, Poland

In the paper will be presented the construction of passive magnetic suspension with superconductors. The system of magnetic suspension was designed for GBRIEL project. There is presented numerical test bench of passive magnetic suspension with superconductor. This kind of suspension was selected for generation of magnetic levitation forces in a sledge of take-off and landing system of an ...

基于超大规模并行计算的多尺度模型声振特性仿真与预报

郁殿龙 [1], 温激鸿 [1], 尹剑飞 [1],
[1] 国防科学技术大学,长沙,湖南,中国

汽车、飞行器、舰船、高速列车等工程装备中,振动和噪声问题会严重影响装备可靠性、安全性、使用寿命和人员的健康。因此,减振降噪需求迫切,相关技术和研究也得到了前所未有的重视。 国防科技大学振动与噪声控制研究团队从2003年开始,致力于基于人工周期结构理论的弹性波传播特性、调控机理及其应用探索研究。将物理学领域中声子晶体、声学超材料等人工周期结构中的新概念与工程减振降噪应用相结合,设计研发了多种声波控制器件与结构。 COMSOL Multiphysics® 声学模块的丰富接口及其处理多物理场耦合问题的强大功能,为研究团队解决复杂多尺度结构的声振特性预报和减振降噪设计提供了有力的工具。在此平台上,研究团队设计了局域共振低频吸声材料,并依托学校“天河二号”超级计算机并行计算环境,开展了元胞尺度(mm量级)到部件尺度(m量级)模型的声学特性有限元建模求解 ...

Extraction of 13.56 MHz NFC-Reader Antenna Parameters for Matching Circuit Design

Prof. Dr.-Ing. habil. A. K. Palit [1],
[1] ZF-Lemfoerder Electronic GmbH, ZF-Friedrichshafen AG. Group, Espelkamp, Germany

Introduction: RFID system uses a Transponder and the near field communication (NFC) antenna and a matching circuit (Figure-1) in which at least latter two must be optimally designed for a higher efficiency. Typically, RFID antennas are flat inductive coils with 2 to 4 turns and are printed directly on the PCB. The larger antenna size implies larger operating distance whereas, the number of ...