Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling a Brushless DC Motor for an Advanced Actuation System using COMSOL Multiphysics® Software

K. S. Shinoy [1], B. Sebastian [1],
[1] Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, India.

This paper presents the design and analysis of a high power radial flux Brushless DC motor for electro-mechanical actuation system. The motor is used for driving an electro-mechanical actuator of 20 ton capacity. Surface mounted, radially magnetized permanent magnet design is mostly preferred due to its ease of control, high efficiency and low maintenance. The motor under consideration is having ...

Magnetorheological Fluid Based Braking System Using L-shaped Disks - new

M. Hajiyan[1], S. Mahmud[1], H. Abdullah[1]
[1]School of Engineering, University of Guelph, Guelph, ON, Canada

This paper presents a novel design of multi-disks Magnetorheological braking system (MR brake) for automotive application. Magnetic saturation in both electromagnetic core and MR fluid is considered in this paper. The electromagnetic analysis of the proposed configuration is carried out using Finite Element based COMSOL Multiphysics® software (AC/DC Module). The system geometry, created using ...

Modeling the Electrical Parameters of a Loudspeaker Motor System with the AC/DC Module

M. Cobianchi [1], M. Rousseau [1], S. Xavier [1],
[1] B&W Group Ltd., Worthing, West Sussex, United Kingdom

The main purpose of a drive unit is to transform the electrical signal at its terminals into acoustic waves via two transduction mechanisms: electro-mechanical and mechano-acoustical. In this paper only the electro-mechanical transformation is discussed in view of a future optimization of the main electrical parameters for a loudspeaker motor: the Force Factor (Bl) and the Blocked Impedance (Zb) ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Modeling the Effect of a Water Tree Inside a Tape Shield and Concentric Neutral Cables - new

K. Burkes[1,2], E. Makram[2], R. Hadidi[2]
[1]Department of Electrical Engineering, Clemson University, Clemson, SC, USA
[2]Savannah River National Lab, R&D Instrumentation, Aiken, SC, USA

COMSOL Multiphysics® software is used to model a water tree in tape shield and concentric neutral cables. It allows for the effect on electric field intensity at the tip of the water tree and electric potential due to the water tree to be better understood. Also, COMSOL is used to calculate the resistance and capacitance of a section of cable with a water tree as it grows across the insulation. ...

Prediction of Transformer Core Noise - new

R. Haettel[1], A. Daneryd[1], M. Kavasoglu[1], C. Ploetner[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]ABB Transformers, Varennes, QC, Canada

Today, low noise is a mandatory feature for power transformers to comply with customer specifications and environmental regulations. Therefore, it is crucial to develop sound prediction tools with sufficient accuracy to avoid overkill margins in design and costly modifications after transformer completion. The paper will focus on core noise which is a typical multiphysics phenomenon involving ...

Calculation of Cable Parameters for Different Cable Shapes 

H. Lorenzen[1], J. Timmerberg[1], and S. Mylvaganam[2]
[1]Department of Electrical Engineering, UAS OOW, Wilhelmshaven, Germany
[2]Department Technology/Engineering, Telemark University College, Porsgrunn, Norway

Efforts involving simulation of  transmission line networks necessitate the accurate values of the parameters of the lines. In this paper, as an attempt in estimating such parameters, the parameters of high voltage asymmetric power lines are calculated. In the process of estimation, the three phase equivalent circuit model is used. The resistance and inductance of such lines are dependent ...

Experimental Validation of Induction Heating of MS Tube for Elevated Temperature NDT Application

B. Patidar [1],
[1] Bhabha Atomic Research Centre, Mumbai India

Induction heating is multiphysics process, which includes electromagnetic induction and heat transfer. Both the physics are nonlinearly coupled with each other. In this paper, mathematical modeling of induction heating of MS tube for elevated temperature NDT application is presented. Mathematical modeling of electromagnetic field is done by using magnetic vector potential formulation. Heat ...

Electrostatic Precipitators - Modeling and Analytical Verification Concept

D. Rubinetti [1], Dr. D. Weiss [1], W. Egli [2],
[1] Institute of Thermodynamics and Fluid Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
[2] EGW Software Engineering, Switzerland

Electrostatic precipitators (ESP) are a reliable technology to control emissions of airborne particles in a series of applications such as coal-fired power plants, cement plants or even for domestic fireplaces. Numerical calculations allow further development of electrostatic precipitators avoiding expensive test stands and field tests. The numerical model in this work is based on Navier ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...