Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Simulation of Electric Field Distribution in Electrospinning Process - new

Y. Zheng[1], B. Xin[2]
[1]Donghua University, Shanghai, China
[2]Shanghai University of Engineering Science, Shanghai, China

The electric field plays a very important role in the electrospinning process, which needs to be seriously considered in the electrospinning configuration developing. High voltage involved in electrospinning process leads to difficulty in measuring the electric field. Numerical simulation is used to design the electric field, and experiments are carried out to validate the spinneret and ...

Modeling a Brushless DC Motor for an Advanced Actuation System using COMSOL Multiphysics® Software

K. S. Shinoy [1], B. Sebastian [1],
[1] Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, India.

This paper presents the design and analysis of a high power radial flux Brushless DC motor for electro-mechanical actuation system. The motor is used for driving an electro-mechanical actuator of 20 ton capacity. Surface mounted, radially magnetized permanent magnet design is mostly preferred due to its ease of control, high efficiency and low maintenance. The motor under consideration is having ...

Magnetorheological Fluid Based Braking System Using L-shaped Disks - new

M. Hajiyan[1], S. Mahmud[1], H. Abdullah[1]
[1]School of Engineering, University of Guelph, Guelph, ON, Canada

This paper presents a novel design of multi-disks Magnetorheological braking system (MR brake) for automotive application. Magnetic saturation in both electromagnetic core and MR fluid is considered in this paper. The electromagnetic analysis of the proposed configuration is carried out using Finite Element based COMSOL Multiphysics® software (AC/DC Module). The system geometry, created using ...

Modeling the Electrical Parameters of a Loudspeaker Motor System with the AC/DC Module

M. Cobianchi [1], M. Rousseau [1], S. Xavier [1],
[1] B&W Group Ltd., Worthing, West Sussex, United Kingdom

The main purpose of a drive unit is to transform the electrical signal at its terminals into acoustic waves via two transduction mechanisms: electro-mechanical and mechano-acoustical. In this paper only the electro-mechanical transformation is discussed in view of a future optimization of the main electrical parameters for a loudspeaker motor: the Force Factor (Bl) and the Blocked Impedance (Zb) ...

Prediction of Transformer Core Noise - new

R. Haettel[1], A. Daneryd[1], M. Kavasoglu[1], C. Ploetner[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]ABB Transformers, Varennes, QC, Canada

Today, low noise is a mandatory feature for power transformers to comply with customer specifications and environmental regulations. Therefore, it is crucial to develop sound prediction tools with sufficient accuracy to avoid overkill margins in design and costly modifications after transformer completion. The paper will focus on core noise which is a typical multiphysics phenomenon involving ...

Model Order Reduction using COMSOL Multiphysics® Software - A Compact Model of a Wireless Power Transfer System

J. Pico [1], T. Bechtold [1], D. Hohlfeld [1],
[1] University of Rostock, Rostock, Germany

This work presents the application of mathematical methods of model order reduction (MOR) for automatic generation of highly accurate, compact models for wireless power transfer systems. We apply a block two-sided second order Arnoldi algorithm to automatically compute a compact model, which is highly accurate, but only demands several orders of magnitude smaller CPU time and can be used for the ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...

Modeling the Effect of a Water Tree Inside a Tape Shield and Concentric Neutral Cables - new

K. Burkes[1,2], E. Makram[2], R. Hadidi[2]
[1]Department of Electrical Engineering, Clemson University, Clemson, SC, USA
[2]Savannah River National Lab, R&D Instrumentation, Aiken, SC, USA

COMSOL Multiphysics® software is used to model a water tree in tape shield and concentric neutral cables. It allows for the effect on electric field intensity at the tip of the water tree and electric potential due to the water tree to be better understood. Also, COMSOL is used to calculate the resistance and capacitance of a section of cable with a water tree as it grows across the insulation. ...

Structural Analysis of the Advanced Divertor eXperiment's Proposed Vacuum Vessel

J. Doody [1], R. Vieira [1], B. LaBombard [1], R. Leccacorvi [1], J. Irby [1], R. Granetz [1]
[1] Plasma Science and Fusion Center - Massachusetts Institute of Technology, Cambridge, MA, USA

The goal of a tokamak is to use high magnetic fields to contain plasma and produce nuclear fusion that can be used for power generation. MIT’s Plasma Science Fusion Center (PSFC) and collaborators are proposing a machine, the Advanced Divertor eXperiment (ADX) to test new technology for these systems at reactor level heat fluxes and magnetic fields. COMSOL Multiphysics® software is used to ...