See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Batteries, Fuel Cells, and Electrochemical Processesx

MHD Electrolyte Flow within an Inter-electrode Gap Driven by a Sinusoidal Electric Field and Constant Magnetic Field

C. Bradley [1], J. Samuel [2],
[1] Benét Laboratories, U.S. Army RDECOM-ARDEC, Watervliet, NY, USA
[2] Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

PECM is a necessary extension to traditional ECM for some high-performance materials. Electrolyte flow in the inter-electrode gap (IEG) can be assisted using a magnetic field to allow higher currents, but this creates a magnetohydrodynamic flow. This paper presents a study of flow ... Read More

The Effect of Fuel and Oxidant Pumping on the Performance of a Membraneless Microfluidic Fuel Cell

A. F. Tayel [1], M. A. Fathallah [1], M. M. Elsayed [1],
[1] Department of Mechanical Engineering, Alexandria University, Alexandria, Egypt

For the commercialization of membraneless microfluidic fuel cell, voltage and minimum power demand for various applications need a precise selection of fuel and oxidant flow rates to achieve the optimum cell performance. A numerical study on a membraneless microfluidic fuel cell was made ... Read More

Accelerated Electrochemical Machining Tool Design

B. Skinn [1], T. Hall [1], S. Snyder [1], K. P. Rajurkar [2], E. J. Taylor [1]
[1] Faraday Technology, Inc., Clayton, OH, USA
[2] University of Nebraska, Lincoln, NE, USA

Electrochemical machining (ECM) is a manufacturing technology that allows metal to be precisely removed by electrochemical oxidation and dissolution into an electrolyte solution. ECM is suited for machining parts fabricated from “difficult to cut” materials and/or parts with complicated ... Read More

Modeling the Influence of Differential Aeration in Underground Corrosion

R. M. Azoor [1], R. N. Deo [1], N. Birbilis [2], J. K. Kodikara [1],
[1] Department of Civil Engineering, Monash University, Clayton, VIC, Australia
[2] Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia

A finite element model for underground corrosion is presented. The model is capable of predicting regions experiencing high levels of corrosion due to differential aeration and helps identify "corrosion hotspots" where physical examination of the buried asset is not feasible. ... Read More

Electrical and Bubbly Flow Modeling of a Molten Salt Electrolysis Cell

A. Oury [1], P. Namy [1], A. M. Martinez [2] , K. S. Olsen [2], A. Solheim [2] ,
[1] SIMTEC, Grenoble, France
[2] SINTEF Materials and Chemistry, Trondheim, Norway

A laboratory-scale electrolysis cell for the recovery of metals is simulated with COMSOL Multiphysics® software. Two models are implemented: an electrical model simulating the current density (reaction rate) distribution at the electrodes and a laminar bubbly flow model which solves for ... Read More

Visualisation of the Internal Processes of a Fuel Cell with the Help of an Application Built with the COMSOL Multiphysics® Software

A. George [1], L. Fromme [1]
[1] University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

The objective was to make a visualisation application for the pupil's lab of the University of Applied Sciences Bielefeld. The application serves as a supplement for a workshop. It should provide a better understanding of a fuel cell, to visualize important influences and collect first ... Read More

Lithium Ion Battery Thermal Safety and Prevention Measures

Qingsong Wang [1]
[1] University of Science and Technology of China, Hefei, China

Lithium ion battery safety problem has attracted the whole world’s attention essentially after the explosion of Samsung Note 7. This work mainly deals with the study of the generation, characteristics and prevention measures of the battery fire. Firstly, the heat generation rate of ... Read More

Heat Generation Breakdown of Lithium-ion Batteries

WeiDong Fu [1], DongYou Wang [1], ZhiJun Qiu [1]
[1] Contemporary Amperex Technology Co., Limited, Ningde, China

The thermal behavior of lithium ion batteries could be investigated by efficient simulation method [1,2]. Here, we developed an electrochemical-lumped thermal analytical model to analyze the thermal response and heat breakdown of a pouch LiNi1/3Co1/3Mn1/3O2 battery (3Ah) under fast ... Read More

A Multiscale Model of the Bipolar Electrode - SDS Adsorption on Stainless Steel

Hörmann, Johannes (何约翰) [1], Meng, Yonggang (孟永钢) [1],
[1] State Key Laboratory of Tribology, Tsinghua University, Beijing, China

In solution, sodium dodecyl sulfate (SDS) (structure shown in Fig. 1) can form a boundary film on metal surfaces. Previous studies have extensively investigated the characteristics of such surfactant films experimentally [1][2][3]. A dependency of SDS surface concentration and film ... Read More

Thermal Modeling of Lithium-ion Pouch-type Cell for Better Cycle Life and Safety Application

J. B. Sangiri [1], S. Ghosh [1], C. Chakraborty[1]
[1] Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Lithium-ion batteries are most preferable energy storage devices for its higher energy density, flexible form factor and lightweight design than comparable battery technologies. The present simulation work is focused on incorporating contact thermal resistance within a two-dimensional ... Read More