Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Chen[1], X. Huang[2], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
[2]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that utilize ceramics as their electrolyte material for oxygen conduction. Compared to other types of fuel cells, they operate at relatively high temperatures, typically 400°C to 1000°C, and have an electrical efficiency over 50% and combined heat and power efficiency over 80%. One way to improve cell performance is to use ...

Aluminization Process from Ionic Liquid in Operative Conditions: Validation and Perspective

A. Giaccherini [1], E. Berretti [2], S. Martinuzzi [1], S. Caporali [1],
[1] INSTM, Firenze, Italy
[2] Department of Chemistry, University of Florence, Firenze, Italy

This work is a first evaluation of the validity of the frozen rotor approximation for the simulation of a stirred beaker. The agreement is good, further analysis will be carried before using the model to optimize labscale setup dedicated to IL electrochemistry.

Modeling and Simulation of Transient SECM (Scanning ElectroChemical Microscopy) Response of Porous Electrodes

L. Balboa [1], G. Wittstock [1],
[1] Institute of Chemistry, Carl v. Ossietzky Universität Oldenburg, Oldenburg, Germany

In the past two decades, highly porous nanostructured materials have been investigated and used for a large variety of applications, such as catalysis, energy conversion/storage, optics, sensing and more. Nanoporous gold (npAu) is one of such materials which have shown great potential as an electro-catalyst due to not only its physical properties but its surface chemistry as well. It presents a ...

Simulation of C-MEMS Based Enzymatic Biofuel Cell

Y. Parikh, V. Penmatsa, J. Yang, and C. Wang

Department of Mechanical & Material Science Engineering, Florida International University, Miami, FL, USA

An Enzymatic Biofuel Cell (EBFC) converts the chemical energy in biological fuels into electricity. In this work, we optimize the performance of the Carbon-Micro Electro Mechanical system in an EBFC by using COMSOL Multiphysics. With a simple model, we realized that most of the glucose reacts with enzymes at the top of the electrode posts, while the bottoms of the posts remain deficient of the ...

Three Dimensional Modeling of PEM Fuel Cells with Current Collection from the Gas Diffusion Layer

R. Pushpangadan[1], A. Soman[2], Arundas R.[2], N. G. Thoppan[2], S. P. Duttagupta[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]College of Engineering, Munnar, Kerala, India

PEM fuel cells are very promising for portable applications. A key component of fuel cell is the flow field plate through which hydrogen will reach the anode, oxygen will reach the cathode and electron collection. Flow field plate made of silicon is not a good electrical conductor , so electrical contacts has to be attached to the Gas Diffusion Layer (GDL) for taking the power to outside ...

Numerical Modelling of Solid Oxide Fuel Cells: Role of Various Cell Parameters on Performance

O. Ighodaro[1], K. Scott[1]
[1]Newcastle University, Newcastle upon Tyne, United Kingdom

Solid oxide fuel cells (SOFCs) are expected to play a major role in future energy systems due to their wide range of applications, high energy efficiency, environmental friendliness and good fuel flexibility. While conventional high temperature SOFCs operate at about 1000C, there is growing interest in intermediate temperature SOFCs which operates between 600C and 800C allowing for wider range ...

Simulation of Nanopores in Capacitive Energy Extraction Based on Double Layer Expansion (CDLE)

E. Ruiz-Reina [1], F. Carrique [2], A.V. Delgado [3], M.M. Fernández [3],
[1] Department of Applied Physics II, University of Málaga, Málaga, Spain
[2] Department of Applied Physics I, University of Málaga, Málaga, Spain
[3] Department of Applied Physics, University of Granada, Granada, Spain

Capacitive energy extraction based on double layer expansion (CDLE) is a new method devised for extracting energy from the exchange of fresh and salty water in porous electrodes. First suggested by D. Brogioli, it is enclosed in a group of emergent technologies jointly known as Capmix methods. The CDLE technique is based on the fact that the capacitance of the electric double layer (EDL) ...

Optimization of an Electrochemistry System

D. Mi [1],
[1] KEISOKU Engineering System Co., Ltd., Chiyoda-ku, Tokyo, Japan

Optimization of a typical electrochemical system with insulating shields is considered in this work, which objective is to reduce the current peak due to singularity and smooth the current density distribution along electrode surface. Moving mesh method was adopted to allow change in design variables, i.e., position and width of the insulating shields. It was found that combining optimization ...

Study of an Alkaline Electrolyzer Powered by Renewable Energy

E. Amores, J. Rodriguez Ruiz, C. Merino Rodríguez, and P. García Escribano
Centro Nacional del Hidrógeno
Puertollano, Spain

The production of hydrogen from renewable energy surplus is seen as a key strategy for energy storage. Centro Nacional del Hidrógeno works actively in this direction by considering a strategic line in order to achieve a sustainable energy future. Alkaline electrolysis is the main industrial way of obtaining hydrogen by electrolysis. However, commercial alkaline electrolyzers are designed for ...

数值模拟涂层保护法保护碳钢电位分布

向斌 [1], 江露 [1], 周洋 [1], 王佳宁 [1]
[1] 重庆大学化学化工学院,重庆,中国

引言:钢结构设备的防腐保护主要采用阴极保护和涂层保护。其中,涂层保护除了防腐同时具备防红外、降温等特殊性能。 此次模拟,通过 COMSOL Multiphysics® 模拟设备在裸钢和 SiO2@ATO 涂层状态下的表面电位分布,证实了 SiO2@ATO 涂层的防腐性和抗红外及降温性能,并验证了 COMSOL Multiphysics® 数值模拟碳钢腐蚀表面电位分布的可靠性。 模拟过程中,假设电解质电导率为常数,阳极的各参数(尺寸、成分、分布等)保持不变。 计算方法:使用“二次电流分布”接口描述电极反应,“稀物质传递”接口描述亚铁离子输运,采用瞬态研究。参数: 1)温度 T; 2)电解质电导率 σ; 3)阴、阳极平衡电位 E_a、E_c; 4)阴、阳极交换电流密度 i0_c、i0_a; 5)传递系数 α 和 β; 6)初始时刻的亚铁离子浓度; 7 ...