Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electrical Behaviour of a Li-ion Polymer Battery

P. Alamar[1], J. Esarte[1]
[1]Fundación CETENA, Navarra, Spain

With a view to estimating electrical characteristics of a Polymer Li-ion Battery during specific charge and discharge conditions, a COMSOL Multiphysics® model has been developed that accounts for electrochemical phenomena inside the device. Cell model has been created using the Li-Ion Battery interface, customizing material properties and electrochemical reactions. The electrochemical parameters ...

Heat Transfer Modelling of Single High Temperature Polymer Electrolyte Fuel Cell (HT PEFC) Using COMSOL Multiphysics®

V. Venkataraman[1]
[1]Centre for Hydrogen & Fuel Cell Research, University of Birmingham, United Kingdom

In this paper a 3D geometry of a single HT PEFC with all the components (membrane, cathode, anode & bipolar plate with flow field) was modelled for heat transfer. The source of heat within the fuel cell is the internal heat generated from electrochemical reactions. Heat source terms used in the model are: Joule Heat - Occurs in membrane and modelled as Volumetric heat source Irreversible ...

Thermal Battery Cell Modeling in a Spirally-Wound Geometry - new

G.Liebig[1], L. Komsiyska[1], P. Bise[1], H. Seeba[1], P. Bohn[2], S. Vasic [1]
[1]NEXT ENERGY, Oldenburg, Niedersachsen, Germany
[2]AUDI AG, Ingolstadt, Bayern, Germany

The characterization of Li-ion batteries is a relevant topic due to the recent developments in Electric Vehicles (EV’s) and Hybrid Electric Vehicles (HEV’s) applications. In order to manage these devices, accurate models are required. At NEXT ENERGY a two dimensional cell-level thermal model was created based on the discharge characteristics of a cylindrical 18650 secondary Li-ion battery ...

Study of Tertiary Current Distributions on the Wafer in a Plating Cell

L. Tong[1]
[1]Keisoku Engineering System Co., Ltd,. Chiyoda-ku, Tokyo, Japan

The reciprocating paddle cell is a known practical method for depositing alloy films on wafer substrates. Recently, the mass transfer boundary layer within an industrial wafer plating cell was studied based on the measurement of limiting current. It was indicated that a shear-plate fluid agitation mechanism is capable of generating a thin (i.e.

Numerical Study of Vanadium Redox Flow Battery Designed with and without Flow Fields

Q. Wang [1], Z. Jiang [1], D. Lu [1], Z. Qu [1]
[1] The College of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, China

A 3D (three-dimensional) model of a vanadium redox flow battery (VRFB) with interdigitated flow channel design is proposed to study the distributions of fluid pressure, electric potential, current density and over-potential during operation. The performance of a VRFB with and without flow fields were analyzed. Figure 1 shows the schematic diagram of vanadium redox flow battery. The main ...

Simulating the Influence of the Nozzle Diameter on the Shape of Micro Geometries Generated with Jet Electrochemical Machining

A. Schubert[1][2], M. Hackert[1], and G. Meichsner[2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure for micromachining. Based on localized anodic dissolution three-dimensional geometries and microstructured surfaces can be manufactured using Jet-ECM. COMSOL Multiphysics is used at Chemnitz UT to simulate the electric current density in the jet and the dissolution process. A mesh displacement dependent on the normal current ...

热管与相变材料相结合的锂电池热管理研究

江智元 [1], 王琼 [1],
[1] 西安交通大学,西安,中国

引言 采用相变材料的汽车电池热管理技术已经被广泛研究,利用相变材料的相变潜热对电池进行温控,能有效降低电池高倍率工作条件下的电池温升,提高温度均匀性[1,2]。热管作为一种高导热,紧凑型,形式灵活的换热器件,也被用于电池热管理之中[3,4]。本文针对相变材料与热管相结合的换热结构,对该结构的换热特点,以及对影响该结构换热效果的相关参数进行了数值模拟研究。 COMSOL Multiphysics® 的使用 利用 COMSOL Multiphysics 中的电化学模块和传热模块,建立了二维的电池-热管-相变材料“三明治”结构(图1)。电池部分采用了热-电化学耦合的电池产热模型,热管采用了三层结构的烧结热管模型。 结果 对于耦合换热模块而言,热管冷端的散热情况和相变材料的厚度对模块的换热效果影响较大。如图2所示,电池的温度随着热管冷端换热系数的提高而下降,温度下降并非线性 ...

Cycling-Induced Degradation of Batteries

M. Vallance [1], A. Meshkov [1], R. White [2], M. Guo [2], S. Rayman [2], L. Cai [2]
[1] GE Global Research, Niskayuna, NY, USA
[2] R.E. White & Associates, Columbia, SC, USA

Rechargeable batteries solve electrification and communication problems. As examples, hybrid battery-diesel generator power supplies efficiently power cell towers in remote locations, detached from the power grid. Large battery banks are used to load level user power requirements, reducing stress on power generation infrastructure. Batteries firm the output capacity of intermittent wind ...

Numerical Modelling of Electrophoresis Applied to Restoration of Archaeological Organic Materials

J. Caire[1], A. Bouh[1], and E. Guilminot[2]
[1]LEPMI, UMR 5631, INPG - CNRS, Saint Martin d’Hères, France
[2]EPCC, Arc'Antique, Nantes, France

Restoration of archaeological materials from oceans is a major activity of Arc’ Antique. Organic materials such as wood, tissues, leathers, papers and ceramics found in sea water are always impregnated with salts. Rinsing such archaeological objects with pure water to extract the salts takes too long, so electrophoresis was used to improve the salt extraction. The objective of this ...

Modeling a Non-Flooding Hybrid Polymer Electrolyte Fuel Cell and Related Diffusion-Migration-Reaction Systems

B.E. McNealy[1], J.L. Hertz[1]
[1]University of Delaware, Newark, DE, USA

Introduction: Understanding the mass and charge transport behavior of heterogeneous systems that include diffusion, migration, and reaction of ions is important in fuel cells, batteries, and other electrochemical applications. Here, a numerical model for charged species transport and reaction has been developed to simulate the electrochemical behavior of a novel type of “non-flooding” hybrid ...