Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM)

R. Hamou, P. Biedermann, M. Rohwerder, and A. Blumeneau
Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

The present work focuses on modeling a new experimental technique: Scanning Electro-chemical Potential Microscopy (SECPM), which is used to probe the potential profile of the electric double layer (EDL). We used an electrostatic approach to compute the EDL potential measured within the metallic probe. Also, we investigated the effect of the interaction of the electrode/probe double layers on the ...

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL Multiphysics simulations show that the effect of the potential bias across the nanochannel yields a significant ...

Optimization of the Lithium Insertion Cell with Silicon Negative Electrode for Automotive Applications

R. Chandrasekaran, and A. Drews
Research and Advanced Engineering
Ford Motor Company
Dearborn, MI

The US Advanced Battery Consortium (USABC) has established goals for long term commercialization of advanced batteries for electric vehicle applications. In this work, a dual lithium-ion insertion cell with silicon as the negative electrode and an intercalation material as the positive electrode is modeled using COMSOL Multiphysics. Both are composite porous electrodes with binder, void ...

Study of Tertiary Current Distributions on the Wafer in a Plating Cell

L. Tong[1]
[1]Keisoku Engineering System Co., Ltd,. Chiyoda-ku, Tokyo, Japan

The reciprocating paddle cell is a known practical method for depositing alloy films on wafer substrates. Recently, the mass transfer boundary layer within an industrial wafer plating cell was studied based on the measurement of limiting current. It was indicated that a shear-plate fluid agitation mechanism is capable of generating a thin (i.e.

Dynamic Simulation of Electrochemical Etching of Silicon with COMSOL

A. Ivanov[1], U. Mescheder[1]
[1]Furtwangen University, Furtwangen, Germany

In the presented work the dynamic simulation of a silicon anodization process is performed. Two mechanisms of etch form development (diffusion in electrolyte, current flow) are considered and simulated. Influence of electrolyte conductivity and radius of the opening in the masking layer is discussed.

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell performance results to the case in which the Pt is assumed to be distributed uniformly over the carbon support as ...

COMSOL Multiphysics® as a General Platform for the Simulation of Complex Electrochemical Systems

A. Lavacchi[1]
[1]Department of Chemistry, University of Firenze, Sesto Fiorentino, FI, Italy

Microelectrodes demonstrate that modeling is crucial for understanding the behavior of complex electrochemical systems. The use of the finite element methods in electrochemistry may be of much more general interest for its ability to handle complex geometries. In this context a software such as COMSOL Multiphysics® allows a straightforward way to the set up models including coupling of ...

Kinetic Investigation of a Mechanism for Generating Microstructures on Polycrystalline Substrates Using an Electroplating Process

T. Soares[1], H. Mozaffari[2], H. Reinecke[1]
[1]Universit├Ąt Freiburg, Freiburg im Breisgau, BW, Germany
[2]Hochschule Furtwangen, Tuttlingen, BW, Germany

The purpose of this study is to understand the growth mechanism of copper (Cu) films on a Cu-Zn system substrate with a pre-defined pattern. The pattern was defined by conducting a selective etching process on a two-phase polycrystalline substrate. As a result of this process, there were etched regions correspondent to beta-phase crystals and quasi non-etched regions that belong to alpha-phase ...

Tertiary Current Distributions on the Wafer in a Plating Cell

L. Tong[1]
[1]Keisoku Engineering System Co., Tokyo, Japan

The tertiary current distributions on the wafer in a plating cell are studied in this work. An acid copper sulfate electrolyte composed of CuSO4/5H2O of 2.4 g/L and H2SO4 of 90 g/L is taken into account for copper deposition on the wafer. The solution of shear-plate agitating fluid dynamics is coupled into the calculation of tertiary current distributions. The obtained distributions of tertiary ...

Cycling-Induced Degradation of Batteries

M. Vallance [1], A. Meshkov [1], R. White [2], M. Guo [2], S. Rayman [2], L. Cai [2]
[1] GE Global Research, Niskayuna, NY, USA
[2] R.E. White & Associates, Columbia, SC, USA

Rechargeable batteries solve electrification and communication problems. As examples, hybrid battery-diesel generator power supplies efficiently power cell towers in remote locations, detached from the power grid. Large battery banks are used to load level user power requirements, reducing stress on power generation infrastructure. Batteries firm the output capacity of intermittent wind ...