Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Zinc Corrosion in a Crevice

C. Taxén, and D. Persson
Swerea-Kimab, Stockholm, Sweden

Corrosion of metals in confined zones is a big industrial problem. The electrochemistry of such localized corrosion processes is complicated by the impact of the corrosion processes on the composition of the local solution. In the present problem, local interaction with the atmosphere causes uptake of O2 and CO2 and evaporation of water from the initially dilute NaCl-solution. This model ...

Design and Implementation of a Small UAV’s Pod Equipped with a Solid Oxide Fuel Cell

N. Briguglio [1], G. Giacoppo [1], O. Barbera [1], F. Cipiti [1], M. Ferraro [1], G. Brunaccini [1], L. Di Giovanni [1], N. Randazzo [1], E. Antonucci [1]
[1] CNR ITAE, Italy

Unmanned aerial vehicles (UAVs) have recently received great interest due to their great potential in both military and civil applications [1-4]. Testing and construction of UAVs is expensive and time consuming and a simulation approach can help to reduce cost for both design and tests. In this paper, the authors have used COMSOL Multiphysics software to design a UAV’s pod equipped with a Solid ...

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical model of the SOFC and use of specifically designed software programs that allows the user to manipulate the ...

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Electrical Behaviour of a Li-ion Polymer Battery

P. Alamar[1], J. Esarte[1]
[1]Fundación CETENA, Navarra, Spain

With a view to estimating electrical characteristics of a Polymer Li-ion Battery during specific charge and discharge conditions, a COMSOL Multiphysics® model has been developed that accounts for electrochemical phenomena inside the device. Cell model has been created using the Li-Ion Battery interface, customizing material properties and electrochemical reactions. The electrochemical parameters ...

Modeling Migration-Diffusion-Reaction Processes in an Idealized Lithium-Sulfur Cell

G. Minton [1], R. Purkayastha [1], S. Walus [1], M. Marinescu [2], T. Zhang [2], G. Offer [2],
[1] Oxis Energy Ltd, Oxford, United Kingdom
[2] Imperial College London, London, United Kingdom

During the basic operation of a lithium-sulfur (Li-S) cell, sulfur molecules are required to undergo a complex mix of electrochemical and chemical reaction processes. To date, almost all modeling of Li-S cell behavior has been undertaken using electroneutral, structurally homogenized, cell scale models accounting for most of these processes. The presented work was undertaken in order to try and ...

Symmetric Stack Model of a Molten Carbonate Fuel Cell (MCFC) with Indirect Reforming

M. Pfafferodt[1], P. Heidebrecht[2], and K. Sundmacher[1,2]
[1]Otto-von-Guericke-University, Magdeburg, Germany
[2]Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

A model of a Molten Carbonate Fuel Cell (MCFC) stack with internal reforming is presented.  It describes the concentrations in the gas phase, the temperatures and the current densities in this highly integrated system. The differential equations, boundary conditions and the coupling equations used in the model are presented. A strategy to solve the system of partial differential ...

Magneto-hydrodynamic Flow in Electrolyte Solutions

M. Qin[1], and H. Bau[1]
[1]Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Pennsylvania, USA

The paper presents and compares two models for simulating magneto-hydrodynamic flow of RedOx electrolyte in a conduit patterned with circular pillars. The first model solves the coupled Nernst-Planck and Navier-Stokes equations subjected to Butler-Volmer electrode kinetics and provides detailed information on ions’ concentrations. The second model treats the electrolyte as a conductor, and ...

An Agglomerate Model for the Rationalisation of MCFC Cathode Degradation

B. Bozzini[1], S. Maci[1], I. Sgura[2], R. Lo Presti[3], and E. Simonetti[3]
[1]Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Lecce, Italy
[2]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[3]ENEA Casaccia, Dipartimento TER, Centro Ricerche Casaccia, S. Maria di Galeria, Roma, Italy

This paper describes the numerical modeling of a key material-stability issue within the realm of Molten Carbonate Fuel Cells (MCFC). The model describes the morphological and attending electrocatalytic evolution of porous NiO electrodes and is apt to predict electrochemical observables that can be recorded during Fuel Cell operation. The model has been validated with original experimental data ...

Improving Fuel Usage in Microchannel Based Fuel Cells

P. Fodor, and J. D'Alessandro
Dept. of Physics
Cleveland State University
Cleveland, OH

In this work a miniaturized fuel cell design based on microchannels, into which the liquid fuel and oxidizer streams are fed through T shaped connectors, is optimized for improved fuel usage. This particular design exploits the laminar nature of the fluid flow at small Reynolds numbers to keep the fuel and oxidizer confined in the vicinity of the corresponding electrodes without the need of a ...