Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Sequential Simulation in COMSOL using Differential Equations to Perform Digital Switching

L. Lam, and R. Darling
University of Washington
Seattle, WA

Many physical systems contain sequential modes of operation. The sequence is one-way and switching between modes is dependent upon specific internal parameters of the system itself. While COMSOL provides the flexibility to perform time-domain simulation and time-based modifications of boundary conditions, simulating sequential systems based upon internal physical variables in COMSOL can be a ...

X80 管线钢焊接接头局部腐蚀的数值模拟

朱国利 [1], 李亚东 [1], 李焰 [1],
[1] 中国石油大学(华东),青岛,中国

管道输送是油气能源长距离输送的重要途径。目前管道连接多采用焊接完成,焊接是一个复杂的非平衡物理化学过程,焊接接头各组成部分的成分、组织和性能都存在差异,同时还容易产生裂纹、气孔、夹杂和未熔合等焊接缺陷和较大的残余应力,使得焊接接头成为管道工程中的薄弱环节。在服役介质中,焊接接头存在宏观腐蚀电池与微观腐蚀电池耦合的多相电化学反应而引起局部腐蚀,可能导致整个构件失效,引发严重的安全事故,造成重大的经济损失甚至人身伤亡。利用 COMSOL Multiphysics® 多物理场仿真软件的腐蚀模块和二次电流分布接口对 X80 钢焊接接头在 CO2 饱和的 NACE 溶液中的电流密度及电位分布进行了仿真,并利用参数化扫描功能,模拟了焊缝与母材不同比例条件下的腐蚀行为。(图1)、(图2)、(图3)和(图4)分别为焊缝:母材=1:3和1:8条件下焊接接头在 NACE 溶液中的电流密度和电位分布 ...

Implementation of an Active Fluid Cooling Design in a 48 V High-Power Battery Module

Z. Wu [1], A. Stawarski [2], H. Kemper [2],
[1] Energy Storage Systems, FH Aachen - University of Applied Sciences, Aachen, Germany; RWTH Aachen University, Aachen, Germany
[2] Energy Storage Systems, FH Aachen - University of Applied Sciences, Aachen, Germany

Individual batteries have their own operational temperature ranges, which shall be respected to avoid both damaging of the cells and shortening of the cycle life. In terms of the Li-Ion cells, many of them do not function well at higher temperatures. Therefore, a better understanding of the thermal behavior of individual cells within a battery system, which can be achieved through simulation ...

Screening Effects in Probing the Electric Double Layer by Scanning Electrochemical Potential Microscopy

R.F. Hamou[1], P.U. Biedermann[1], A. Erbe[1], and M. Rohwerder[1]
[1]Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

A computational method is developed to study probing the electric double layer by Scanning Electrochemical Potential Microscopy. The model is based on a modified Poisson- Boltzmann equation, which takes into account steric effects. We investigated the effect of metallic apex protrusion and the Open Circuit Potential (OCP) of the tip on the probed potential. A clear electrostatic screening effect ...

COMSOL Multiphysics® as a General Platform for the Simulation of Complex Electrochemical Systems

A. Lavacchi[1]
[1]Department of Chemistry, University of Firenze, Sesto Fiorentino, FI, Italy

Microelectrodes demonstrate that modeling is crucial for understanding the behavior of complex electrochemical systems. The use of the finite element methods in electrochemistry may be of much more general interest for its ability to handle complex geometries. In this context a software such as COMSOL Multiphysics® allows a straightforward way to the set up models including coupling of ...

Thermal Modeling of Lithium-ion Pouch-type Cell for Better Cycle Life and Safety Application

J. B. Sangiri [1], S. Ghosh [1], C. Chakraborty[1]
[1] Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Lithium-ion batteries are most preferable energy storage devices for its higher energy density, flexible form factor and lightweight design than comparable battery technologies. The present simulation work is focused on incorporating contact thermal resistance within a two-dimensional thermal model of Lithium-ion pouch cells. In the present study COMSOL Multiphysics® software has been used to ...

Uncertainty Assessment and Sensitivity Analysis of Heat Generation within a Lithium-Ion Battery

G. Liebig [1], G. Gupta [1], K. Derendorf [1], C. Agert [1],
[1] DLR Institute of Networked Energy Systems, Oldenburg, Germany

Dedicated work in modeling, simulation and design optimization of Lithium-ion Battery (LIBs) was done in the past decades, and still, the most widely used one for electrochemical processes is the Newman model. [1] The underlying parameters are treated deterministically, but the impact of uncertainty due to experimental accuracy limitations and cell-to-cell variations have an undeniable impact on ...

Numerical Modelling of Solid Oxide Fuel Cells: Role of Various Cell Parameters on Performance

O. Ighodaro[1], K. Scott[1]
[1]Newcastle University, Newcastle upon Tyne, United Kingdom

Solid oxide fuel cells (SOFCs) are expected to play a major role in future energy systems due to their wide range of applications, high energy efficiency, environmental friendliness and good fuel flexibility. While conventional high temperature SOFCs operate at about 1000C, there is growing interest in intermediate temperature SOFCs which operates between 600C and 800C allowing for wider range ...

Analysis of an Electrochemical Machining Process for Particle Reinforced Aluminum-Matrix Composites

M. Hackert-Oschätzchen [1], N. Lehnert [1], C. Scherf [2], A. Martin [1], M. Penzel [1], A. Schubert [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

At the Technische Universität Chemnitz several academic institutions work on aluminum matrix composites (AMCs) within the Collaborative Research Centre SFB 692 HALS. Besides the development and analysis of these materials one main task is finishing machining of AMCs by an electrochemical machining (ECM) process. One possible method of ECM is electrochemical machining with continuous electrolytic ...

Zinc Corrosion in a Crevice

C. Taxén, and D. Persson
Swerea-Kimab, Stockholm, Sweden

Corrosion of metals in confined zones is a big industrial problem. The electrochemistry of such localized corrosion processes is complicated by the impact of the corrosion processes on the composition of the local solution. In the present problem, local interaction with the atmosphere causes uptake of O2 and CO2 and evaporation of water from the initially dilute NaCl-solution. This model ...