Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigation of Reverse ElectroDialysis Units by Multi-Physical Modelling

L. Gurreri [1], F. Santoro [1], G. Battaglia [1], A. Cipollina [1], A. Tamburini [1], G. Micale [1], M. Ciofalo [1],
[1] Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università degli Studi di Palermo (UNIPA), Palermo, Italy

Salinity gradient represents an interesting renewable energy source. Reverse ElectroDialysis (RED) is an ion exchange membrane-based process that convert directly the salinity gradient energy into electric current. Thereby, two solutions at different concentrations are fed into two series of alternated channels. As various physical phenomena occur in RED units and affect the process performance, ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Modeling of Ammonia-fed Solid Oxide Cells in COMSOL Multiphysics®

D. Cheddie[1]
[1]University of Trinidad and Tobago, Couva, Trinidad and Tobago

This paper presents a 2D model of an intermediate temperature ammonia-fed SOFC (400 – 700 °C) based on the Temkin-Pyzhev model of ammonia decomposition. Phenomenological equations are implemented in COMSOL Multiphysics®. The Dusty Gas Model is used to model species transport in porous media, but a modification of Fick’s Law is used. Results show that intermediate temperatures can alleviate ...

Modeling of the Material/Electrolyte Interface and the Electrical Current Generated During the Pulse Electrochemical Machining of Grey Cast Iron

O. Weber[1], A. Rebschläger[1], P. Steuer[1], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current and thus of the material removal behavior is ...

Modeling Galvanic Corrosion

E. Gutierrez-Miravete[1], M. Turner[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Galvanic corrosion is encountered in marine applications because one often has dissimilar metal joints and seawater acts as an electrolyte. One metal acts predominantly as anode and undergoes material dissolution while the other acts predominantly as cathode and is the site where a cathodic reaction takes place. Assuming a stagnant electrolyte, the equation governing the distribution of ...

Modeling an Ejector for Hydrogen Recirculation in a PEM Fuel Cell

X. Corbella [1], R. Torres [2], J. Grau [2], M. Allué [3],
[1] Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (Universitat Politècnica de Catalunya), Barcelona, Spain
[2] Fluid Mechanics Department (Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona - Universitat Politècnica de Catalunya), Barcelona, Spain
[3] Institut de Robòtica I Informàtica Industrial (Consejo Superior de Investigaciones Científicas – Universitat Politècnica de Catalunya), Barcelona, Spain

PEM Fuel Cells’ durability and performance can be increased using an ejector based hydrogen recirculation system. In this work, a CFD model has been implemented to simulate the flow within an ejector used to recirculate hydrogen in PEM Fuel Cell systems. The model has been validated experimentally and has been used to design and manufacture an ejector that will be implemented in a fuel cell test ...

Cooling and Hardening during Injection Molding of Field Joint Coatings for Deep Sea Pipelines

L. Van Lokeren [1], R. Verhelle [1], S. Loulidi [1], H. Boyd [2], G. Ridolfi [2], G. Van Assche [1]
[1] Vrije Universiteit Brussel, Brussels, Belgium
[2] Heerema Marine Contractors, Leiden, The Netherlands

A multilayer polymer coating is applied to carbon steel pipelines installed in the sea to protect against corrosion and to insulate to maintain the temperature. For field joint coatings, both thermosets (like polyurethane) and semi-crystalline thermoplastics (like polypropylene) are commonly used. To predict the temperature and crystallinity or conversion of the polymer during the cooling ...

Electrochemical Impedance Spectroscopy of a LiFePO4/Li Half-Cell

M. Cugnet[1], I. Baghdadi[1], M. Perrin[1]
[1]INES - CEA, Grenoble, France

This study demonstrates that a multiphysics model of a LiFePO4/Li half-cell can be applied to simulate the impedance results from an EIS. However, it implies that the double layer capacitance has to be taken into account, since it is responsible of the semi-circle in the impedance spectrum. A 15 min simulation allows getting a complete spectrum of the half-cell impedance from 0.1 to 200 kHz. The ...

Computational Optimization of Battery Grid for Efficiency and Performance Improvement

V. Panneerselvam [1], R. C. Thiagarajan [1]
[1] ATOA Scientific Technologies Pvt Ltd, Bengaluru, India

Battery grids are critical system used in automobile, renewable energy, medical devices and mobile phones. Research efforts are directed to increase energy density, longevity and reduce the cost. This paper is related to computational optimisation of lead acid battery for efficiency and performance improvement. Battery grid is the precursor for the active material and current distribution in ...

Analysis of the Electrochemical Removal of Aluminum Matrix Composites Using Multiphysics Simulation - new

M. Hackert-Oschätzchen[1], N.Lehnert[1], M. Kowalick[1], G. Meichsner[2], A. Schubert[1,2]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

In the Collaborative Research Centre 692 at TU Chemnitz several academic institutions work on aluminum matrix composites (AMCs). These materials consist of an aluminum matrix, which is reinforced by SiC or Al2O3 particles with dimensions less or equal 1 µm. One main task is finishing machining of AMCs by electrochemical machining (ECM). The goals are depending on the application whether to ...