Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. The model is applied in two regimes of the process – pore formation and electropolishing – by definition of current density dependent functions of porosity and dissolution valence based on experimental results. As found also experimentally, ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Tertiary Current Distributions on Rotating Electrodes

L. Tong
Kesoku Engineering System Co., Ltd.,
Japan

The tertiary current distributions on rotating electrodes are studied in this work. An acid copper sulfate electrolyte is used within an electrochemical cell of practical dimensions. The distributions of ion concentrations are obtained by the two-dimensional fluid flow simulation and the solution of mass-transport equations based on axial symmetry.

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell – PEMFC

S. Skoda[1], E. Robalinho[2], A. Paulino[1], E.F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
[2]Universidade Nove de Julho, São Paulo, Brazil

The objective of this study is to determine the locations where liquid water accumulates at cathode gas flow channels, and the corresponding operating conditions. In such way it is possible to mitigate slug flow, responsible for channel blockage and hindering the diffusion of reactants to the catalytic sites. The model presented here is a comprehensive PEMFC 3D model, which includes liquid water ...

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method - new

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization systems, and for micro-sensing devices. For thermal properties investigation many experimental systems were ...

Heat Generation Modeling of Two Lithium Batteries: from the Cell to the Pack in COMSOL Multiphysics® Software

J. Stoudmann [1], R. Rozsnyo [1], T. Mackin [2], J. Dunning [2]
[1] Haute École du paysage, d'ingénierie et d'architecture, Genève, Switzerland
[2] California Polytechnic State University, San Luis Obispo, CA, USA

A thermal model to predict the heat generation during the charge and discharge of a battery pack is an essential tool to manage the thermal behavior, performance and life of the batteries. In this work, a battery cell is modeled in COMSOL Multiphysics® using the Batteries and Fuel Cells module.

Analysis of Electro-Thermal Hot Spot Formation in Li-Ion-Battery-Cells

W. Beckert[1], C. Freytag[1], T. Frölich[1], G. Fauser[1]
[1]Fraunhofer IKTS, Dresden, Germany

The presented model approach offers a computational efficient tool to analyze the influences of geometrical design details, material selection and operational conditions on the electro-thermal behavior of a full Li ion battery cell geometry. It considers typical aspects as anisotropic winding structure, electro-thermal coupling and nonlinear electrical characteristics for moderate computational ...

Numerical Simulation of the Lithium-Ion Battery Cell Discharge Characteristics - new

Z. Umar[1], D. Ledwoch[1], L. Komsiyska[1], S. Vasić[[1]
[1]EWE-Forschungszentrum für Energietechnologie e. V, Oldenburg, Germany

In general battery cells are charged/discharged using constant current or constant power expressed as C-Rates and P-Rates respectively. We are developing a single cell-level Li-Ion battery model in order to simulate the performance and the physicochemical phenomena under power discharging mode (P-Rate). The P-Rate is defined as the measure of the rate at which a battery charges/discharges ...

Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process

R. van Tijum
Dr.
Advanced Technology Center, Philips Consumer Lifestyle, Drachten, The Netherlands

Redmer van Tijum studied Applied Physics at the University of Groningen. In 2006, he received his PhD title on ‘Interface and surface roughness of polymer metal laminates’ in the field of Material Science at the University of Groningen. After that he became research and development engineer at Philips, where he focussed his attention on the improvement of production processes mainly ...

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...