See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Geophysics and Geomechanicsx

COMSOL Modeling of Groundwater Flow and Pollutant Transport in a Two-Dimensional Geometry with Heterogeneities

M. Gobbert, M. Whitmore, B. Peercy, M. Baker, and D. Trott
University of Maryland Baltimore County
Baltimore, MD

The Delmarva Peninsula is located on the East Coast of the United States, between the Chesapeake Bay and Atlantic Ocean. Industrial farming in the Delmarva Peninsula leads to levels of nutrients nitrogen, which grossly exceed natural levels and greatly impair the health of the bay. The ... Read More

A Coupled Analysis of Heat and Moisture Transfer in Soils

E. Evgin, J. Infante Sedano, and Z. Fu
University of Ottawa
Ottawa, ON
Canada

This paper is a part of a study on energy piles for heating and cooling of buildings. Energy piles are used for two reasons: (1) to transfer structural loads to foundation soils, and (2) to transfer heat from foundation soils to the building for space heating in winter time and for ... Read More

Modeling of the Heat Transfer Between a CO2 Sequestration Well and the Surrounding Geological Formation

B. Sponagle[1], M. Amadu[2], D. Groulx[1], and M. Pegg[2]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada

In a carbon sequestration system CO2 would be pumped down a well and into a reservoir at supercritical temperatures and pressures. An important consideration is the long term stability of the reservoir. The goal of these simulations is to thermally model the injection well and ... Read More

Computational Science and Engineering at DuPont

R. Nopper
Dupont Engineering
Research & Technology
Wilmington, DE

Rick has a BS in Physics, a ScM in Geological Sciences, and a PhD in Physics. He worked at Air Force Geophysics Laboratory, Conoco Petroleum Exploration Research, and, since 1989, has been at the DuPont Experimental Station. In this industrial setting, Rick has had opportunity to work on ... Read More

COMSOL Implementation for Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoirs

X. Zhang, A. Shapiro, and E.H. Stenby
Center for Energy Resources Engineering, Technical University of Denmark, Lyngby, Denmark

Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. ... Read More

Erosion Of Buffer Caused By Groundwater Leakages Based On ESM-Application

O. Punkkinen[1], A. Jorma[1], K. Kari[2], and M. Olin[3]
[1]B+Tech, Helsinki, Finland
[2]Posiva, Eurajoki, Finland
[3]VTT, Espoo, Finland

In this work the issue of saturation phase erosion caused by groundwater leakages was approached both experimentally and computationally by employing COMSOL\'s Earth Science Module. We evaluated the total mass of eroded bentonite out of a cylindrical erosion channel both numerically and ... Read More

The Dissolution and Transport of Radionuclides From Used Nuclear Fuel in an Underground Repository

Y. Beauregard[1], M. Gobian[2], and F. Garisto[2]
[1]University of Western Ontario, London, ON, Canada
[2]Nuclear Waste Management Organization, Toronto, ON, Canada

In the Canadian concept for a deep geological repository for used nuclear fuel, the used fuel bundles are placed in containers consisting of an inner steel vessel surrounded by a copper shell. The filled containers are placed in excavated tunnels or boreholes and surrounded by a ... Read More

Simulation Of Soil Remediation Polluted By Hydrocarbons Using A Non-Thermal Atmospheric Plasma

J. Rojo, S. Ognier, and S. Cavadias
Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, University Pierre et Marie Curie, Paris, France

A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent ... Read More

Modeling CO2 storage Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå, F. Cuisiat, E. Aker, and E. Skurtveit
Norwegian Geotechnical Institute(NGI), Oslo, Norway

The geomechanical effects related to CO2 injection into the Krechba formation at In Salah, Algeria, are considered through a coupled modeling approach to simulate simultaneously CO2 migration in the aquifer and the surrounding formations, as well as the poro-elastic stress changes ... Read More

Absorbing Boundary Domain for CSEM 3D Modeling

J. Park[1], T.I. Bjørnarå[1], and B.A. Farrelly [2]
[1]Norwegian Geotechnical Institute(NGI), Oslo, Norway
[2]MultiField Geophysics AS, Norway

In the study, we present an efficient absorbing boundary domain technique whose main application is the 3D finite element (FE) modelling of the so-called controlled-source electromagnetic (CSEM) data, collected for the geophysical exploration. The developed technique is based on the real ... Read More