See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Geophysics and Geomechanicsx

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole. Read More

Mechanical Strength Simulation of Concrete Samples Using COMSOL Multiphysics® Software with 3D Mesh Generated by Industrial Tomography System

W. C. Godoi[1], D. A. Ussuna[2], S. J. Ribeiro[2], K. de-Geus[3], V. Swinka-Filho[2], F. C. de-Andrade[3], K. F. Portella[2], B. L. Medeiros[2], R. C. R. Santos[4]
[1]Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
[2]Institutos Lactec, Curitiba, PR, Brazil
[3]Copel Geração e Transmissão S.A., Curitiba, PR, Brazil
[4]Universidade Federal do Paraná, Curitiba, PR, Brazil

Analysis of concrete structures is usually carried out by destructive methods. The internal volume flaws directly influence concrete properties. Such inclusions are empty or even resulting from the manufacturing process or degradation by percolation leaching dissolution and chemical ... Read More

Stabilization Time in Infiltration Test

A. H. Ito[1], S. R. Lautenschlager[1], J. H. C. Reis[1], A. Belincanta[1]
[1]Universidade Estadual de Maringá, Maringá, PR, Brazil

The percolation of water into soil can be modeled considering Darcy's Law in laminar flow. In this manner the key property is the coefficient of hydraulic conductivity. Its determination can be made through laboratory or field testing. One of the most known field tests used for ... Read More

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is ... Read More

Hydrodynamics of Lake Victoria: Vertically Integrated Flow Models in COMSOL Multiphysics® Software

S. Paul[1], R. Thunvik[1], D. D. Walakira[2], J. Mango[2], J. Oppelstrup[3], R. Wait[4]
[1]The Royal Institute of Technology, Stockholm, Sweden
[2]Makerere University, Kampala, Uganda
[3]COMSOL AB, Stockholm, Sweden
[4]Uppsala University, Uppsala, Sweden

Lake Victoria is the largest tropical lake in the world and is very important for environment and economy in East Africa. The hydrodynamic processes in the shallow (40-80 m deep) water system are unique due to its location at the equator which makes Coriolis effects noticeable also for ... Read More

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a ... Read More

Evaluation of Instability of a Low-salinity Density-dependent Flow in a Porous Medium

Y. T. Habtemichael[1], R. T. Kiflemariam[2], H. R. Fuentes[1]
[1]Department of Civil & Environmental Engineering, Florida International University, Miami, FL, USA
[2]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

Seawater intrusion into coastal aquifers is usually modeled by using transport models that include account for the effect of variable-density on flow. Variable-density models can be validated with the Henry and Elder benchmark problems. However, when mixed convective flow is simulated ... Read More

The Effects of a Superparamagnetic Ground on the EMI Response of a Target

A. T. Clark[1]
[1]Research & Development, WM Robots LLC, Colmar, PA, USA

Soil’s electromagnetic properties adversely affect the performance of electromagnetic induction (EMI) sensors and if conditions are severe enough, render them useless. A simple circuit model is often used to express the electromagnetic induction response of a target analytically. This ... Read More

Calibration of a Geothermal Energy Pile Model

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using ... Read More

Analysis of 1D, 2D, and 3D Marine CSEM in COMSOL Multiphysics® Software

E. C. Luz[1]
[1]Universidade Federal do Pará, Belém, PA, Brazil

The Marine Controlled Source ElectroMagnetic (marine CSEM) is a geophysical method used by the oil industry to investigate resistive targets in the sediments under the ocean floor. In this work we simulate marine CSEM data including 1D, 2.5D and 3D modeling. The results obtained with ... Read More