Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Tunnels, a New Potential Source of Energy: 3D Modeling of a Heat Exchanger within Tunnel Lining

C. Soussi [1], O. Fouché [2], G. Bracq [3], S. Minec [3],
[1] Le Cnam, Paris, France
[2] Ecole des Ponts, Champs-sur-Marne, France
[3] Bouygues Construction, Saint-Quentin-en-Yvelines, France

This work investigates the possibility of thermal activation of future tunnels to heat and/or cool the surface buildings or infrastructure such as subways stations. The principle is to insert pipes in the tunnel lining segments, which are connected to a geothermal pump. A heat transfer fluid antifreeze circulates inside the tubes to exchange heat with the surrounding environment (tunnel air and ...

Radiation Heat Transfer in Imaging Infrared Spectrometer

A. Jhaveri [1], M. Kushhare [1], A. Bhargav [1],
[1] Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.

Imaging Infrared Spectrometer (IIRS) is a Hyperspectral optical imaging instrument which measures the spectra of a scene in high resolution within spectral bands covering Near Infrared (NIR) to Mid Infrared (MIR) regions. Radiation entering the spectrometer assembly governs the temperature of different internal parts and hence plays an important role in determining the desired spectral ...

A Multiphysics Approach to Fundamental Conjugate Drying by Forced Convection

M. de Bonis, and G. Ruocco
DITEC, Universitµa degli studi della Basilicata, Campus Macchia Romana, Potenza, Italy

Heat and mass transfer involved in drying is studied by using COMSOL 3.4. The effect of air temperature on the performance of the drying process applied to fresh food slices is scrutinized. COMSOL’s flexible formulation is exploited by using special drying kinetics for the substrate, and by including a treatment of the dependence of the properties upon the residual moisture content. The model ...

Transport of Cadmium through Molten Salt to Argon Cover Gas in Electrorefiner

K.Revathy[1], S. Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Electro refining is one of the important step in the Pyro processing nuclear spent fuel with molten salt. The electro refiner is a process vessel consists of anode ,cathodes and stirrers and ultra –high pure argon gas is provided at the top for inert atmosphere and at the bottom a cadmium layer is provided. The vapor pressure of the cadmium is high at the operating temperature, the cadmium vapor ...

Thermomechanical Modeling of Dislocation Density Increase During PVT of SiC Crystals

D. Jauffrès [1], J. M. Dedulle [2], D. Chaussende [2], K. Ariyawong [2]
[1] Univ. Grenoble Alpes, LMGP, SIMAP, CNRS, Grenoble, France
[2] Univ. Grenoble Alpes, LMGP, CNRS, Grenoble, France

During Physical Vapor Transport (PVT) growth of single 4H-SiC crystal and subsequent cooling down, thermal stresses lead to the multiplication of dislocations that are non-desirable for the semiconductor applications of this material. These dislocations induced by thermal stresses could be reduced by an appropriate control of the thermal gradients inside du crystal during its growth and cooling ...

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. The model is based on the Phase Field method in order to apprehend the evolution of the liquid-gas interface ...

Model of Sub-Surface Heat Rejection in Alternative Cooling Systems

E. Holzbecher [1], T. Manchester [2],
[1] German University of Technology in Oman (GUtech), Halban, Oman
[2] Univ. Utrecht, Utrecht, Netherlands

A model is presented for heat rejection in the subsurface. Geometries of different dimension are coupled by linear and general extrusions. In that way it is possible to deal with multi-scale physical set-up. An example shows the high influence of groundwater flow.

Optimal Thermal Design of Converged-Diverged Microchannel Heat Sinks for High Heat Flux Applications

D. Chakravarthii [1], S. Subramani [1], M. Devarajan [1],
[1] Univeristy of Science Malaysia (USM), Georgetown, Penang, Malaysia

With the advancements in aerospace technology, micro-electromechanical systems, hybrid data centres and microfluidics, the miniature size electronic chips in such applications are need of the century. The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of devices. Microchannel heat sinks are efficient method to dissipate heat when the ...

Pore-Scale Simulation of Two-Phase Flow with Heat Transfer Through Dual-Permeability Porous Medium

H.A. Akhlaghi Amiri[1], A.A. Hamouda[1]
[1]University of Stavanger, Stavanger, Rogaland, Norway

This paper addresses one of the major challenges in water-flooded oil reservoirs, which is early water breakthrough due to the presence of high permeable layers in the media. COMSOL Multiphysics is used to model two phase (water and oil) flow in dual-permeability porous medium at micro-scales. The heat transfer module is coupled with the laminar two-phase flow interface, because temperature ...

Equation Based Heat and Mass Transfer in Porous Media

S. Pemberton[1], K. Ekici[1], R. Arimilli[1]
[1]The University of Tennessee, Knoxville, TN, USA

Perspiration during intense physical activity is an essential part of human thermoregulation. Clothing affects the cooling rate of the body. Heat and water vapor are coupled through evaporation and transported through the fabric. A model of the above system was developed for fabrics of different properties to simulate human cooling using COMSOL Multiphysics®. Equation-based modeling allows the ...