Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Heat Generation Breakdown of Lithium-ion Batteries

WeiDong Fu [1], DongYou Wang [1], ZhiJun Qiu [1]
[1] Contemporary Amperex Technology Co., Limited, Ningde, China

The thermal behavior of lithium ion batteries could be investigated by efficient simulation method [1,2]. Here, we developed an electrochemical-lumped thermal analytical model to analyze the thermal response and heat breakdown of a pouch LiNi1/3Co1/3Mn1/3O2 battery (3Ah) under fast-discharging conditions at 7C(environment temperature:20℃). The key parameters of the proposed model (such as ...

Pore-Scale Simulation of Two-Phase Flow with Heat Transfer Through Dual-Permeability Porous Medium

H.A. Akhlaghi Amiri[1], A.A. Hamouda[1]
[1]University of Stavanger, Stavanger, Rogaland, Norway

This paper addresses one of the major challenges in water-flooded oil reservoirs, which is early water breakthrough due to the presence of high permeable layers in the media. COMSOL Multiphysics is used to model two phase (water and oil) flow in dual-permeability porous medium at micro-scales. The heat transfer module is coupled with the laminar two-phase flow interface, because temperature ...

Modeling of Active Infrared Thermography for Defect Detection in Concrete Structures

S. Carcangiu[1], B. Cannas[1], G. Concu[2], N. Trulli[3]
[1]Department of Electric and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy
[3]Department of Architecture and Planning, University of Sassari, Alghero, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters related to heat transfer process through the building material. The Infrared Thermography Technique (IRT) has been applied. Experimental measurements have been carried out on a concrete structure with an inside ...

Modeling Melting Profiles in Chocolate Pieces for Optimizing their Sensory Properties

B. Watzke[1], F. Lenfant[1], N. Martin[1]
[1]Nestlé research Centre, Vers-chez-les-Blanc, Switzerland

Chocolate is a pleasurable product largely consumed over the world. It is known that ingredients, process and particle size distribution largely impact the chocolate sensory perceptions. It was hypothesized that a suitable choice of chocolate size and geometry modifies in-mouth melting and aroma release and modulates flavour and oral texture perception. Since in-vivo experiments on chocolate ...

Numerical Modeling of the Near-Subsurface Temperature Distributions in the Presence of Time Varying Air Temperature in the Boundary Condition and Space Varying Temperature for the Initial Condition - new

M. Ravi[1], D. V. Ramana[1], R. N. Singh[1]
[1]CSIR - National Geophysical Research Institute, Hyderabad, Telangana, India

The subsurface thermal structure in presence of groundwater recharge/discharge has been obtained by applying the Robin type boundary condition at the earth’s surface. The Robin type boundary condition involves the effect air temperatures at the surface which are taken as exponentially varying with time and the initial condition which is taken as exponential function of depth. The numerical ...

Keyhole Behavior During Spot Laser Welding

V. Bruyere [1], C. Touvrey [2], P. Namy [1]
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Is-sur-Tille, France

The formation of porosities in spot laser welding depends on complex thermo-hydraulic phenomena. To understand and control these mechanisms, the COMSOL Multiphysics® software is used to model both the interaction and cooling stages of an isolated impact made with a Nd:YAG pulsed laser. The model is based on the Phase Field method in order to apprehend the evolution of the liquid-gas interface ...

A Heat Transfer Model for Ugitech’s Continuous Casting Machine

C. Deville-Cavellin
Liquid Metal Metallurgy and Solidification department
Ugitech’s Research Center, Ugine, France

Dr. Christian Deville-Cavellin is a Research Engineer at Ugitech's Research Center, since 1995. Ugitech, member of the Schmoltz & Bickenbach group, is a stainless steel, long products producer. C. Deville-Cavellin is responsible for all research topics related to liquid metal metallurgy and solidification. He also keeps an expert role in machinability, within one of the french public ...

Simulation of Fast Response Thermocouple for the Nuclear Reactor Core

K. Dusarlapudi[1], B. K. Nashine[2], D. Bai[3], and C. S. Babu[1]
[1]KL University, Vaddeswaram, Guntur, Andhra Pradesh, India
[2]E.D&S.S, IGCAR Kalpakkam, India
[3]VIT, Vellore, India

Thermocouples have been used for measurement of temperature ever since the discovery of Seebeck effect. Though the voltage output of a thermocouple is a function of the temperature difference between hot and cold junctions, the response time and the magnitude of voltage depends on the geometry and material of the thermocouple also. This report deals with the study of the mineral-insulted ...

Heat Drain Device on Ultrasound Imaging Probe - new

G. Vigna[1], L. Spicci[1]
[1]Esaote SPA, Florence, Italy

Self-heating is a problem to consider for Ultrasound Imaging probes. Since the probe is in contact with the skin, it’s necessary to find a solution to lower the front face temperature in order to avoid patient discomfort, even at the most demanding operating condition. One solution consists in the design of a device that drains the heat from the front to the rear of the transducer, where a ...

Geometric Multigrid Solver and Experimental Validation in Laser Surface Remelting

M. M. Pariona [1], F. de Oliveira [1],
[1] State University of Ponta Grossa, PR, Brazil

INTRODUCTION The purpose of this work is to verify the effect of Multigrid method on the CPU time for the resolution of the heat transfer model, based on the Finite Element Method (FEM), in order to simulate the laser surface remelting (LSR) of the Al–1.5 wt.% Fe alloy. To accelerate the convergence of Single grid methods, Multigrid method (MG) was employed in order to reduce the CPU time. In ...