Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Enhanced Transient Modeling of Hybrid Photovoltaic Air (PVT) Module - new

R. Kiflemariam[1], M. Almaz[1], F. Zevallos[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 2D transient heat conduction model was created in COMSOL Multiphysics® software to study the performance of photovoltaic-thermal (PVT) water system. The model captures the variation of important environmental and system parameters such as outside temperature, solar irradiation, air velocity and temperature. The model has a good agreement with experimental data for the photovoltaic cell ...

Coupled Numerical Modeling and Thermodynamic Approach for SiC Growth Process

J. M. Dedulle [1], K. Ariyawong [1], D. Chaussende [2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CNRS, Grenoble, France

Silicon carbide (SiC) single crystals are industrially produced by the physical vapor transport technique. Apart from the geometry of the growth setup, there are two main process parameters that can be controlled: temperature and pressure. To support the development of the process, numerical simulation has imposed as the only tool able to describe the process itself, providing a good evaluation ...

Mathematical Modelling of Evaporation of Water Using Steam–Unitary Model Analysis

D. Rakshit [1], S. Ramanathan [2],
[1] Indian Institute of Technology Delhi, India
[2]Centre for Science and Environment, New Delhi, India

Multiple effect evaporators use steam of temperature 120-200°C as a source of heat to evaporate water from solutions. Multiple effect evaporators are widely used by the food, desalination and wastewater treatment industry. In the present study as a proof of concept, multi-physics modeling has been done to demonstrate the phenomenon of evaporation of water with steam. Unit dimensional 2D ...

Finite Element Evaluation of the Strength of Silicide-Based Thermoelectric Modules

A. Miozzo [1], S. Boldrini [1], A. Ferrario [1], M. Fabrizio [1],
[1] Institute of Condensed Matter Chemistry and Techologies for Energy - National Research Council of Italy, Padova, Italy

Silicide-based thermoelectric modules (TEMs) for power generation operate at mid-high temperature range. In the operating conditions, thermal stresses in materials with different coefficient of thermal expansion may reduce the mechanical strength of the modules. In this work, a finite element evaluation of the mechanical strength of a 16 legs thermoelectric module prototype operating with 300 K ...

Finite Element Modeling of Coupled Heat and Mass Transfer of a Single Maize Kernel Based on Water Potential Using COMSOL Multiphysics Simulation

A.J. Kovács, E. Lakatos, G. Milics, and M. Neményi
University of West Hungary, Institute of Biosystems Engineering, Mosonmagyarovar, Hungary

Finite element modeling of agricultural materials is very often used for describing physical processes. However, exact physical measurements are needed as input parameters for the models. Knowing the driving forces (potentials) during heat and mass transfers is necessary for an accurate model. Water potential gradients as the driving force are used in contrast with the conventional practice ...

Modeling of Active Infrared Thermography for Defect Detection in Concrete Structures

S. Carcangiu[1], B. Cannas[1], G. Concu[2], N. Trulli[3]
[1]Department of Electric and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy
[3]Department of Architecture and Planning, University of Sassari, Alghero, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters related to heat transfer process through the building material. The Infrared Thermography Technique (IRT) has been applied. Experimental measurements have been carried out on a concrete structure with an inside ...

Chemical Reaction Under Highly Precise Microwave Irradiation

S. Fujii[1], Y. Wada[2]
[1]Chiba University, Chiba, Japan
[2]Tokyo Institute of Technology, Tokyo, Japan

Chemical reactions conducted under microwave irradiation have high reaction rates and high selectivity, but these reaction rates are not always reproducible. To achieve reproducibility, a solid-state microwave source with an ultra precise oscillator, high power amplifier module (HPA), and elliptical applicator is developed. This HPA has up to 141 W average power and generates pure 2.45-GHz sine ...

Design of a Heat Trap for Optimal Heat and Current Conduction on Soldering Pads

F. Figueroa [1], P. Aguirre [1],
[1] STW, Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

This poster presents an evaluation study of a couple of heat trap designs, analyzing the generation of Joule heating and heat dissipation characteristics. Through parametric simulations of the heat traps varying geometries, it is possible to see the generated temperature difference at a constant current. Simulating a soldering process, the heat traps are tested on time dependent studies to see ...

Numerical Simulation of a Building Envelope with High Performance Materials

M.H. Baghban[1], P. Jostein Hovde[1], and A. Gustavsen[2]
[1]Civil and Transport Engineering Department, Norwegian University of Science and Technology, Trondheim, Norway
[2]Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Trondheim, Norway

Simulation tools for building physics problems play an important role in design and understanding the behavior of energy efficient buildings. There are different tools available for simulation of these problems, but each simulation tool has its own advantages and limitations. In this paper, a heat transfer problem in an exterior building wall with high performance materials has been simulated in ...

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed ...