See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
There has been growing demand for high performance micro sensors capable of detecting nuclear radiations being released from various industries, Nuclear reactors. Radiations emitted from the radioactive materials are invisible and not directly detectable by human senses. Thus it is ... Read More
Gallium Nitride (GaN) is a very interesting and highly promising material system for both optical and microwave high-power electronic applications. It plays a crucial role today in the most promising technology for high power, high-frequency circuits: AlGaN/GaN HEMTs. GaN HEMTs ... Read More
In heating upgrades, most attention is paid to the boiler. When upgrading to HR++-boilers (eff of 107%) however, difficulties may occur since the high efficiency boilers are designed for water temperatures around 40°C, while the old radiators are designed for water temperatures higher ... Read More
A COMSOL Multiphysics® model of our apparatus has been created in order to simulate the pressurizations of our nanoparticles by Deuterium. Using reference measurements during a cooling process, we calibrated the model so that its thermal aspects reflect the ones of our experimental set ... Read More
Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh ... Read More
Perspiration during intense physical activity is an essential part of human thermoregulation. Clothing affects the cooling rate of the body. Heat and water vapor are coupled through evaporation and transported through the fabric. A model of the above system was developed for fabrics of ... Read More
A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ... Read More
COMSOL Multiphysics® coupled with Solidworks® is employed to design, simulate and fabricate cartridges for a materials printer to accomplish in-situ curing of UV curable ink patterns as they are printed on flexible media for printed electronic circuit manufacturing. The cartridges ... Read More
This paper presents steady and unsteady computational results obtained from numerical solutions of the full two-dimensional governing equations for annular internal condensing flows in a channel. This is achieved by tracking the “sharp” interface while solving the flow fields using ... Read More
Fuel bundles in the CANDU (CANada Deuterium Uranium) reactor are designed for heating a pressurized coolant (heavy water) to generate electricity. The designs for the fuel bundles differ based on the number of heating elements. The flow of heavy water over the elements and inside the ... Read More