See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This paper presents steady and unsteady computational results obtained from numerical solutions of the full two-dimensional governing equations for annular internal condensing flows in a channel. This is achieved by tracking the “sharp” interface while solving the flow fields using ... Read More
Fuel bundles in the CANDU (CANada Deuterium Uranium) reactor are designed for heating a pressurized coolant (heavy water) to generate electricity. The designs for the fuel bundles differ based on the number of heating elements. The flow of heavy water over the elements and inside the ... Read More
The optimisation of dimensions, materials choice of heaters in annealing furnaces are done with COMSOL Multiphysics® in 2D-axisymetry. Heat losses sources are identified and corrective actions can be taken in function of simulation results. A power saving of more than 50% is achieved ... Read More
Electric resistances are widely used as heating elements in domestic and industrial equipment; since process water contains calcium carbonate and calcium bicarbonate, limescale plays an important role on global efficiency of water-heating systems. Calcium carbonate has a very low thermal ... Read More
Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are ... Read More
The application of an oscillating magnetic field on the high-power full-penetration laser beam welding process of a 20 mm thick stainless steel plate was numerically and experimentally investigated. In the simulations, three-dimensional heat transfer and fluid dynamics as well as ... Read More
A numerical analysis on the thermal performance of a sample, consisting of two cavities surrounding a Multi-Layer Reflective Insulation (MLRI) material, under various angles and for downward and upward heat flows was performed. The sample reached high thermal resistance values when ... Read More
One of the main parameters to consider during the nuclear waste storage design phase is the drum corrosion risk. The humid-air corrosion models available in literature predict that, for carbon steel, the phenomena start to become appreciable for relative humidity (RH) values close to ... Read More
Nowadays, spot laser welding is a full-fledged part of industrial manufacturing and is routinely used due to its advantages. It generates very located temperature gradients, and therefore, induces small distortions in the pieces. The COMSOL Multiphysics® software is used to model the ... Read More
In this paper, we simulated the heating of a work piece by coupling two heat sources. Concentrated solar energy was applied at the bottom of the work piece, which generated a heat flux from the parabolic solar dish concentrator. Subsequently, induction heating was applied, which ... Read More
