See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
One challenge in designing micro-electromechanical systems (MEMS) is considering the variability of design parameters caused by manufacturing tolerances and material properties. The function of MEMSs is significantly influenced by this variability, which can be represented in terms of ... Read More
The mixing characteristics and residence time distributions (RTDs) of a staggered herringbone microchannel have been investigated numerically by COMSOL Multiphysics and by particle tracking algorithms that incorporate diffusion via a random walk. All simulations were validated with ... Read More
Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very ... Read More
The idea of application as a hearing device based on a parasitoid fly, Ormia ochracea has been studied extensively recently. This paper addresses another possible application as an underwater directional sensor. In order to study the feasibility of the application, it is necessary to ... Read More
In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a ... Read More
Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero ... Read More
The shear mode of film bulk acoustic resonators (FBARs) is preferred to the longitudinal mode owing to its lower acoustic losses in a liquid. However in addition to mass loading, the resonance is also affected by temperature and liquid viscosity. These two parameters can either be sensed ... Read More
Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed ... Read More
Usually, in integrated circuits, the chip is brazed on leadframe and then, a polymer resin is molded around to create the packaging. On the first hand, the molding process at high temperatures will induce thermomechanical stress on the chip. As the leadframe, the chip and the braze have ... Read More
Viscous damping has a significant effect on dynamic performance of the resonators operating within fluid. This work is aimed to find the viscous damping for MEMS torsional paddle operating in air. Interaction of moving structure with the fluid requires a complicated and challenging ... Read More
