See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Operation of a modified type microthrottle (MT) pump is analyzed by numerical simulation. Conventional MT pumps have disk type piezoelectric membranes while the analyzed type has a membrane of a rectangular shape. This could be advantageous in case the pump is stacked into an array for ... Read More
Monitoring of indoor CO2 concentration is of particular interest to detect room occupancy in order to optimize power consumptions of building. One approach to monitor the indoor CO2 concentration is to use optical detection using specific absorption lines of CO2 molecules in the infrared ... Read More
The possibility to detect and probe molecules in microfluidic devices gives rise to interesting applications. There are different approaches how to detect and probe particles, but a common step, for most methods, is to place the particles on a sensor. This can be done by applying ... Read More
Cell migration of endothelial cells along gradients is an important process in vivo and an interesting target for cancer therapeutics. Microfluidics offer very powerful tools to study such migration processes in detail in the lab. In this study, we describe a model to simulate molecular ... Read More
We have simulated the ultrasound-induced acoustophoretic motion of microparticles suspended in an aqueous solution. The full first-order thermoviscous acoustics equations have been implented on a rectangular microfluidic 2D domain excited with an ultrasound field tuned to resonance near ... Read More
Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS ... Read More
Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to ... Read More
Pressure-driven air flow is directed over the microfluidic cavity induces circulating fluid motion in the cavity. Analyte contained in the air stream is absorbed into the cavity, mixes with the nanoparticles as a result of the circulating cavity flow. Therefore, the nanoparticles ... Read More
With their small size, low manufacturing cost, fast transient response, and capacity to generate fluid power directly from small electrical power sources, microdevices incorporating electroosmostic flow (EOF) have wide-ranging applications, including newly developed high-performance ... Read More
Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics ... Read More
