Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of a Heat Trap for Optimal Heat and Current Conduction on Soldering Pads

F. Figueroa [1], P. Aguirre [1],
[1] STW, Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

This poster presents an evaluation study of a couple of heat trap designs, analyzing the generation of Joule heating and heat dissipation characteristics. Through parametric simulations of the heat traps varying geometries, it is possible to see the generated temperature difference at a constant current. Simulating a soldering process, the heat traps are tested on time dependent studies to see ...

Oxidation of Metallic Nanoparticles

A. Auge[1], A. Weddemann[1], F. Wittbracht[1], B. Vogel[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

The oxidation behavior of metallic nanoparticles is investigated in respect to material parameters like Mott potential, defects on the microstructure and oxide volume increase per ionic defect. An emphasis is laid on magnetic nanoparticles where the degree of oxidation can be measured via the reduction of the magnetic moment.

A Time Dependent Dielectric Breakdown (TDDB) Model for Field Accelerated Low-K Breakdown Due To Copper Ions

R. Achanta, J. Plawsky, and W. Gill
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

We have simulated the copper ion concentration and internal electric field profiles in a dielectric material by solving the transient continuity/Poisson equations using COMSOL Multiphysics. We have shown that failure of dielectrics can be modeled if we assume that failure in Cu/SiO2/Si devices occurs due to a pile-up of copper ions at the cathode and the subsequent increase in electric field ...

A Transient Unified Model of Arc-Weld Pool Couplings During Pulsed Spot Gas Tungsten Arc Welding

A. Traidia[1], and F. Roger[2]
[1]AREVA NP, Technical Center, Saint Marcel, France
[2]ENSTA Paristech, Paris, France

Using COMSOL Multiphysics, a finite element model is introduced in this paper to describe the couplings between the welding arc and the weld pool dynamic in pulsed gas tungsten arc welding. The cathode, arc-plasma and melting anode regions are taken into account. The unified time-dependent model describes the heat transfer, fluid flow and electromagnetic fields in the three regions. The ...

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of ...

Modeling Thermal Effects of Battery Cells Inside Electric Vehicle Battery Packs

M. R. Khan [1], S. K. Kær [1],
[1] Department of Energy Technology, Aalborg University, Aalborg, Denmark

The poster presents a methodology to account for thermal effects on battery cells to improve the typical thermal performances in a pack through heating calculations generally performed under the operating condition assumption. The aim is to analyze the issues based on battery thermo-physical characteristics and their impact on the electrical state of battery cells(Khan, Mulder et al. 2013, Khan, ...

Modeling of Straight Jet Dynamics in Electrospinning Process

R. Pandya [1], A. Kumar [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Electrospinning is a process where high voltage is applied to produce polymer fibers of nanoscale diameter. Various polymers have been used for this process in molten form or as a solution with an appropriate solvent such as glycerol. The melt solidifies while the solvent evaporates to produce fibers. The fibers produced have properties such as high surface to volume ratio and a molecular ...

A Flow Induced Vertical Thermoelectric Generator and its Simulation using COMSOL Multiphysics

E. Topal
Micro and Nanotechnology Program
Middle East Technical University
Ankara, Turkey

In this study, a new thermoelectric harvester with fluid flow for increased performance is introduced. The thermoelectric generator is 3D vertical configuration with p- and n-doped Silicon thermolegs. There is water flow between channels integrated through the thermoelectric columns, providing forced convection on the heat flow path. Our thermoelectric generator design can be used for energy ...

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET - new

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from the medical field to space exploration. They convert physical parameters such as temperature, pressure, humidity etc. into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of pressure sensors. Improvement in the sensitivity is the major factor to be considered while designing pressure ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid ...