Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigating the Performance of Mechanically Ventilated Double-Skin Facades with Solar Control Devices in the Main Cavity - new

C. G. Galante[1]
[1]Newtecnic Ltd, London, England, UK

The use of ventilated facades may reduce the cooling and heating energy demands of the building. Double-skin facades (DSFs) belong to the wider group of ventilated facades and currently represent one of the most interesting and studied facade systems. The purpose of this study is to investigate the thermal behaviour and performance of a DSF being designed for a real project in the Middle East ...

Development of a Micro Ultrasonic Transducer - new

F. F. Dall'Agnol[1], A. C. F. de Mattos[1]
[1]Center for Information Technology Renato Archer (CTI), Campinas, SP, Brazil

We simulate a Capacitive Micromachined Ultrasound Transducer (CMUT) using COMSOL Multiphysics® software. The CMUT is an electromechanical system, therefore, we couple the physics of electrical and structural mechanics to describe its dynamics. We obtain the distributions of the electric field and the stress as a function of time. Finally, we derived the time evolution of the device for several ...

COMSOL in a New Tensorial Formulation of Non-Isothermal Poroelasticity

A. Mario-Cesar Suarez[1], and V. Fernando Samaniego[2]

[1]Faculty of Sciences, Michoacan University, Morelia, Mich., Mexico
[2]Faculty of Engineering, National University of Mexico, Mexico City, Mexico

The presence of a moving fluid in a porous rock modifies its mechanical response. Poroelasticity explains how the fluid inside the pores bears a portion of the total load supported by the rock. The remaining part of the load is supported by the elastic skeleton, which contains a laminar fluid coupled to the framework by equilibrium and continuity conditions. This work introduces an original ...

Multiphysics: Fluid Mixing and Brine Pool Formation for Economic Geology Applications - new

C. Schardt[1]
[1]University of Minnesota-Duluth, Duluth, MN, USA

Significant submarine mineral deposits form when hot, metal-laden, saline fluids emerge onto the seafloor and mix with ambient seawater. Resulting density changes of fluid mixtures can trigger fluid buoyancy reversals, brine pool formation, and metal accumulation (Figure 1). While some of these processes are known from experiments, the inception, development, and physical-chemical processes ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...


张春 [1],
[1] 四川大学

现在 COMSOL Multiphysics® 中对时域问题的处理大多数通过离散时间来处理,比如微波炉中加热一杯水,杯壁由两半不同介电常数的玻璃组成,杯子在托盘带动下旋转,对杯子中的水进行受热分析。传统的解法是将要分析的过程离散为一定步长的时间点,每算完一个时间点将杯子旋转一定的角度,然后在求解器中设置此次计算结果作为下一个时间点的初值。如果时间步长足够短,便可以模拟水的受热情况。这种做法的不足之处是需要调用 MATLAB 联合求解,计算时间较长。而且还有一个问题是在不同的时间点,由于场分布不同,杯子的位置不同,COMSOL 中剖分的网格应该是不同的,不同的网格节点值如何映射是 COMSOL 中没有解决的问题。我们如果能够把杯子位置的改变转化为对应节点上物质属性参数的变化,将杯子的旋转等效为杯子不动,而杯壁的介电常数随时间周期变化 ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation give ...

Microwave Heating Simulation of Frozen Pie - new

F. Chen[1], T. Gulati[1], H. Zhu[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

This research studies the thermal effect of frozen pie heating in the microwave oven. Considering as composite material, the properties of pie derived based on its composition. Here the package, susceptor’s influence to the temperature distribution is also studied.

Modeling of the Reduction Stage during the Continuous Refining of Copper in a Packed Bed Reactor

F. Mansilla[1], L. Voisin [2]
[1]Advanced Mining Technology Center, Chile University, Santiago, Chile
[2]Department of Mining Engineering, Advanced Mining Technology Center, Chile University, Santiago, Chile

Throughout history, the copper pyrometallurgical processes have been carried out mostly in discontinuous or batch systems. In recent decades new continuous technologies have been developed but focused only on Smelting and Converting stages leaving aside the Refining one. In 2002 a novel technology was proposed by the Department of Mining Engineering of Chile University which consists in two ...

Design and Analysis of a Wetting Lens for the Pinhole Cameras of a Two Phase Flow System

A. K. Reddy[1], T. Satyanarayana[1]
[1]Lakireddy Balireddy Autonomous College of Engineering, Mylavaram, A.P., India

The present work reports the fabrication process of micro lens for pinhole cameras, modeled using COMSOL Multiphysics®, by satisfying the wetting properties. Wetting is a change in contact angle between the liquid and solid surface area. The wetting properties are clearly understood in terms of forces. The two immiscible fluids were taken for the formation of fluid-fluid and wall-fluid ...