See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Vibrations are an essential part of our day to day engineering environment, which happen in automobiles, avionics, machines, electric motors, structures, electronic equipments, etc. When a system is vibrating under higher frequencies leads to higher displacement, noise and heat ... Read More
This paper presents a FEA approach to estimate temperature rise and thermal stress experienced in PZT/Solid structure due to internal heat generation and dynamic excitation. The power dissipative density consumed by structural damping of the mass structure, internal heat generation due ... Read More
COMSOL Multiphysics® has been used to develop assessment tools for the NASA-sponsored Precision Combustion, Inc. (PCI) regenerable Microlith®- based adsorber modules. The Full Scale Water Removal (FSWR) PCI Microlith® was initially modeled for comparison with exit velocity data, ... Read More
Focused ultrasounds are used in many medical applications as a treatment: it is important to evaluate the induced effects of such a procedure to achieve a high accuracy while keeping the untargeted surrounding areas safe. In the present paper, COMSOL Multiphysics®, a simulation software ... Read More
A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that have demonstrated high sensitivity to mass-change in experimentally fabricated sensors. The fundamental bending mode of vibration and the 1st bending harmonic are predicted at 10 ... Read More
In this work, we demonstrate the implementation of the micromagnetic equations for the description of ferromagnetic thin films in COMSOL Multiphysics®. We apply our model to magnetoresistive sensors consisting of several soft ferromagnetic layers and their response to magnetic particles. ... Read More
The need for fast, easy and cost-effective analysis of blood samples as well as our understanding of the functionality of cells and neurons are two rather pressing issues in the modern world. Both of these can be addressed by functional lab-on-a-chip systems, which have been designed and ... Read More
The fabrication of piezo aluminium composite modules for sensor and actor applications with mass production technologies is in the scope of the SFB/Transregio 39 PT-PIESA project funded by the (German Research Foundation). After forming of cavities with a width of 0.3 mm into aluminium ... Read More
This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids. The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q ... Read More
Some types of mechanical devices, such as molds, but not only, include a large number of micro-mechanisms, valves, channels, vents, or other devices subject to deterioration or malfunctioning, frequently caused by unwelcome phenomena such as incrustations, fillings, or reciprocal bonding ... Read More
