See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Bentonite based materials (BBM) are considered as ideal buffer materials for deep geological repository (DGR) for nuclear wastes because of several desirable properties, such as low permeability, high adsorption capacity and proper swelling ability (Guo and Fall 2018). However, gas ... Read More
A 3D unsteady state chemical reaction system was modeled using COMSOL Multiphysics® simulation software. In this work, the Chemical Reaction Engineering Module was integrated to calculate physical, chemical and thermodynamic properties and transport phenomena. Advanced materials such as ... Read More
The five year survival rate for malignant brain and central nervous system cancer was estimated at 35% between 2000 and 2015. Deep brain tumors can be unsuited for conventional surgical intervention. One minimally invasive treatment option is interstitial needle-based therapeutic ... Read More
The quantitative value of electrical bio impedance in tissue structures is sensitive to changes in ionic concentration, frequency and dispersion but lacks specificity. It is difficult to a create a physical measurement set up of clinical value capable of quantifying the contribution of ... Read More
The author’s goal is to demonstrate the use of high porosity open-celled aluminum 6061-T6 foam as an effective heat sink with applications in electronics cooling. The experiment will demonstrate the effects of varying porosity, heat flux, and flow rate on the effectiveness of the heat ... Read More
Temperature changes in the body have been recognized as an indicator of illness for centuries and localized temperature variations due to inflammatory or ischemic events are common in a great variety of diseases. In the case of cancerous breast tumors the increased cell growth rate ... Read More
The innovation in audio quality enables organizations to increase efficiency and business value by using the power of crystal-clear voice calls. Steady growth in digital voice communication demands accurate acoustic simulation tools as a prerequisite for cost reduction and shorter time ... Read More
Increased demand for high power electronics has required increasingly more efficient thermal management techniques. Simple cold plates using tubes or channels are frequently used to cool high power components but restrictions on size, weight, and power have restricted their ... Read More
在消费类音响产品中高音扬声器的设计品质 对于整个系统表现至关重要。主轴频响和可控的偏 轴指向性是设计的关键指标。利用VPD工具可以优化产品整体的声学性能,缩短研发周期,提 升效率, 和降低成本。从本质上来讲仿真是一种工具,不能 只停留在纸面上,需要做出样品与实际测量数据比 对,才能形成闭环,调整改善模型,参数和总结经 验,使仿真更贴近实际。 Read More
空芯光纤因空气芯的存在,理论上具备极低的光学非线性、色散与极高的损伤阈值,同时能够大大减弱了光纤材料吸收的影响,适合极端波长、大功率激光以及超短脉冲传输,在光通信、传感、微加工以及气体非线性研究等领域具有极大潜力。其中,反谐振空芯光纤因其简单有效的结构设计及低损宽带传输的特点而备受关注。这里我们利用COMSOL的波动光学模块对其进行若干数值仿真来研究针对此类具有大芯径-波长比和稀疏精细结构微结构空芯光纤的网格划分策略,并基于此进一步研究了反谐振空芯光纤的结构参数对其泄漏损耗以及材料吸收所引发的材料损耗的影响。我们通过对空气 ... Read More