See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Variations of structure and shape of cells play an important physiological role. For instance, tumor and normal cells can be distinguished by elasticity, indicated by the amount of deformation under given stress. The mechanical characterization of a certain cell type is meaningful to ... Read More
Despite its wide use in industrial or culinary conditions, contact heating has not been extensively studied in the literature devoted to food products. This is mainly due to the difficulty in measuring in a non-invasive way the heat flux transferred as well as the thermal contact ... Read More
As a general definition, the presence of any repeated motion after a regular interval of time is known as vibrations. The basic theory of vibrations is described by the system of forces acting on a moveable and deformable body. The natural phenomena existing in the universe such as ... Read More
The fabrication of new reactor types has been simplified significantly by the rapid progression within the field of additive manufacturing. A reactor can be fit to nearly every specific task by varying its geometry and therefore its reactant hold-up and flow conditions in continuous ... Read More
Multiphysical simulation is a daily-used tool for loudspeaker design and engineering, however it is still a time expensive process that requires specific modeling capabilities. In order to increase engineering efficiency and to broaden the usage of multiphysical simulation, at ... Read More
Electrolyte-gated organic field-effect transistors differ from conventional OFETs by using an electrolyte as the gate insulating material. Due to a high permittivity of the electrolyte, EGOFETs tend to have a higher capacitance than their conventional non-electrolytic counterparts. ... Read More
The heat and fluid flow calculation inside the melt pool in welding processes is a complex challenge. It can be useful to predict defects in the weld seam or to study the influence of some process parameters. Even if the required equations are mastered over the last few years, the cost ... Read More
For a specific project in downhole tools for oil and gas wells, we have to weld the tool before shipping and the tool must be programmed during installation on the rig location. For this reason we decided to use magnetic communication and power transmission as well. We have used COMSOL ... Read More
Model calibration and validation were implemented using experimental data from literature. We utilized a microfluidic electrochemical cell that was configured with parallel, rectangular, and multi-layered channels, which is operating in a co-flow mode. CO2 gas stream enters the cathode ... Read More
This work explores the implications of wholly random and non-linear nanostructures on electromagnetic wave propagation within a multiphysics simulation environment. Showcased is a way to noticeably bypass the inaccuracies drawn from the linearity dependency of traditional simulation ... Read More
