See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Using COMSOL® 3.5a, models were created to simulate the heat transfer between the working fluid and the selective coating as well as the natural convection of the working fluid itself. In these models, a constant heat input on half of the selective coating facing the sun was considered ... Read More
Ultrasound imaging probes are widely used for several types of diagnosis applications. In the present work we focus our attention on a disk-type probe, which is widely used in CW and PW operating conditions. In particular we present a 2D-axial symmetry FEM for the probe, capable to ... Read More
Submerged membrane bioreactor (SMBR) is an efficient technology for wastewater treatment that combines biological process and membrane filtration in one single stage. In the most usual configuration, submerged membrane hollow fibers are set in several planes. Air is introduced from the ... Read More
Accurate and efficient tracking is important for designing particle accelerators as well as many other applications which use electromagnetic fields to control particles. We have developed a tracking code in MATLAB® Simulink® which uses electric and magnetic fields calculated in COMSOL ... Read More
• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro ... Read More
3D model of MEMS based SAW gas sensor is designed using Focused Inter Digital Transducers design. Surface displacement & Electrical potential are analyzed at resonance & anti-resonance frequencies. Operating frequency is from 8.7 MHz which acts as start band and 9.2 MHz as stop ... Read More
This paper is a preliminary design study to develop a hybrid atmospheric icing sensor which have an adequate potential to detect an icing event, icing type and icing rate together with icing load. The physics to detect icing event and icing type have been numerically understood using ... Read More
Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale ... Read More
Microwave drying of foodstuffs is a complex interplay of mass, momentum, and energy transport coupled with large deformation of the solid. To be able to better understand the microwave drying process, a fundamentals-based three dimensional (3D) multiphase porous media based model is ... Read More
Efficient modeling and computation of the nonlinear interaction of fluid with a solid undergoing nonlinear deformation has remained a challenging problem in computational science and engineering. Direct numerical simulation of the non-linear equations, governing even the most simplified ... Read More
