See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
2D steady state heat conduction-electric current model was created in COMSOL Multiphysics® software to study the performance of thermoelectric generator-photovoltaic-thermal (TEG-PVT) system. Four different cases were studied in the paper. In case 1, PV cells without concentrator was ... Read More
Respect to the previous approaches, in this communication the electrochemical and chemical kinetics as well as the transport phenomena, were modelled at very high level of theory, taking into account all the parameters affecting the galvanic process, including turbulent convection ... Read More
Using modeling software such as COMSOL Multiphysics during the design phase, an approach called “simulation-led design”, allows ideas to be both inspired and validated by the use of simulations. Then, using simulations after the product is designed can shorten the prototype-testing ... Read More
Design and optimization of the nanophotonic devices are critical in realizing advanced photonic integrations in the future. COMSOL can be used for simulating various types of nanophotonic devices involving different materials and dimensions. This report talks about some recent work of ... Read More
A sphere sedimenting in a cylindrical tube filled with non-Newtonian fluids, including purely viscous and viscoelastic type, is of both practical and fundamental interest. To investigate the effects of shear-thinning and elasticity, four representative constitutive equations are adopted, ... Read More
To maintain same droplet size across parallel devices, new break-up strategies based on geometry are been studied. In this work, we model a geometrically-set droplet generator, in which the droplet break-up occurs by a block and break mechanism. In other words when the disperse phase ... Read More
In this study, a new thermoelectric harvester with fluid flow for increased performance is introduced. The thermoelectric generator is 3D vertical configuration with p- and n-doped Silicon thermolegs. There is water flow between channels integrated through the thermoelectric columns, ... Read More
In this paper, we develop and analyze a standard piezoacoustic Tonpilz-transducer model for underwater acoustics in Comsol by addressing the attendant piezoelectric and pressure acoustic multiphysics phenomena. Transducer properties that are studied and characterized are the center ... Read More
With the current trend towards always more complexity associated to more functionalities in biotechnological systems, it is required to know with accuracy the pressure drop in the circuitry of microfluidic systems. In general, a full three-dimensional calculation is not tractable due to ... Read More
A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby ... Read More
