See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Micro-tweezers have been widely investigated because of their extensive applications in micro-fluidics technology, microsurgery and tissue-engineering. It has been reported that thermal actuation provides greater forces and easier control when compared to electrostatic micro actuation. ... Read More
This research work investigates the effect of inclusion of small amount (0%, 2% and 6%) of natural Nano fillers on the internal field properties and discharge characteristics of polypropylene films. 3D Models are built to simulate field properties and internal charge in natural ... Read More
Electrostatically excited plasma waves can induce a “plasma wind” in the surrounding media or air. The lifted object has a shape of a flying saucer, just for better illustration. A travelling plasma wave propulsion requires a pre-ionized media around the surface and a travelling ... Read More
This paper presents one approach to the modeling of an abrupt junction PIN photodiode light sensor using COMSOL Multiphysics software and the incorporated SPICE® capability. The current model is built using the capabilities of SPICE in COMSOL Multiphysics 4.0. This model demonstrates the ... Read More
Dr. Yosuke Mizuyama is a Lead Engineer at Panasonic Boston Laboratory. He has been working on various electronics for Panasonic Corporation in Japan for many years. His research includes incandescent/fluorescent lamp, electrostatic/pzt inkjet, MEMS and BD/DVD/CD optical drive. His ... Read More
The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, a new quasi-TEM capacitance and inductance analysis ... Read More
The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, the quasi-TEM analyses of symmetrical triple coupled ... Read More
High power Terahertz (THz) sources have become a topic of great interest for a wide variety of applications from medical science to security systems and from material science to telecommunication. The high output power of these THz sources mainly depends upon high current density and ... Read More
The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on an integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and ... Read More
In this paper it is shown how the equivalent circuit parameters of a MEMS resonator can be simply obtained from an eigenfrequency simulation. Additionally, it is demonstrated that the Q-factor as a result of support losses in a MEMS resonator can be determined using a matched boundary ... Read More