See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also ... Read More
Mixing is a typical unit operation that occurs almost in all chemical industries. Static – alternatively termed motionless – mixers are being widely used due to their low power consumption, low capital investment, minimal maintenance costs and versatility. The traditional helical mixing ... Read More
The mitral valve apparatus is a complex and refined mechanism located between the left atrium and the left ventricle of the heart which can manifest various kinds of pathologies. In order to support identification of potentially critical conditions resulting from some typical ... Read More
Harvesting of renewable energy requires efficient energy storage systems. Rechargeable flow batteries offer certain advantages over other energy storage techniques in use, such as the lifting of water, compression of air, flywheel, etc. In a flow battery, electrolyte flowing through ... Read More
COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically ... Read More
This study investigates the effect of uniform magnetic field on the deformation of a ferrofluid droplet in a two dimensional (2D) simple shear flow by means of numerical simulation. The magnetic field is applied in a perpendicular direction to the flow direction. A numerical scheme ... Read More
Flow, concentration and temperature fields are studied with numerical and experimental methods inside a scaled-up fuel cell anode channel model. The low aspect ratio channel has a porous medium as the inferior wall where a mixing of different pH solutions occurs. Chromatic change of ... Read More
Oxygen delignification is a technology established worldwide and a common operation in pulp mills that use Kraft cooking. The reasons for using this technology are the reduction of organochlorine compounds in the effluents, and economy of chemicals in the bleaching stage. The objective ... Read More
In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational ... Read More
Manufacturing and finishing of components with complex internal features is a significant challenge. Industrial sectors like automotive industry, aeronautics or medical technology require these internal features with highest precision and repeatability. Such components are often machined ... Read More
