See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
An inactive Demonstration facility for the integrated pyroprocess, named High temperature Electrorefining (HTER) facility is in developing stage. This facility is equipped with several types of pyroprocess equipment such as electro-refiner, salt and cadmium distillation equipment, ... Read More
Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. ... Read More
In the steelmaking processes, the stirring of the metal bath by argon (or nitrogen) injection is a widely used method to achieve chemical or thermal homogeneity. Computational fluid dynamics can be used as a very powerful tool to gain an insight into the mass transfer and heat transfer ... Read More
In this paper, we simulated the heating of a work piece by coupling two heat sources. Concentrated solar energy was applied at the bottom of the work piece, which generated a heat flux from the parabolic solar dish concentrator. Subsequently, induction heating was applied, which ... Read More
In this work the innovative concept is the use of a Cu based metallic foam, characterized by open cell structure, as active element for heat exchangers. The metallic foam, produced by liquid infiltration method, was introduced inside a Cu tube, as base element for the exchanger. In the ... Read More
In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation of controlled systems as lumped input and distributed output systems (LDS) is introduced. Next, FEM modeling of temperature fields in ... Read More
This paper addresses the modeling of a complex glass forming process as an example of a complex, nonlinear distributed parameter system. The system is modeled by a fluid dynamics approach, which means that the forming is regarded as a fluid with free surfaces. Here, the coupling of the ... Read More
COMSOL Multiphysics is offering an important alternative to home codes for modeling and simulation of complex problems with including coupled effects on heat and mass transfer. The present work focuses on low Prandtl number fluid melts subject to symmetry breaking and transition to ... Read More
Railgun is an electrically-powered gun that accelerates a conductive projectile along magnetic metal rails. Various factors increase the projectile velocity. Each method has its own advantages and disadvantages. While increasing the projectile velocity, one has to keep in mind the ... Read More
Microelectrodes demonstrate that modeling is crucial for understanding the behavior of complex electrochemical systems. The use of the finite element methods in electrochemistry may be of much more general interest for its ability to handle complex geometries. In this context a ... Read More