See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This paper addresses the modeling of a complex glass forming process as an example of a complex, nonlinear distributed parameter system. The system is modeled by a fluid dynamics approach, which means that the forming is regarded as a fluid with free surfaces. Here, the coupling of the ... Read More
COMSOL Multiphysics is offering an important alternative to home codes for modeling and simulation of complex problems with including coupled effects on heat and mass transfer. The present work focuses on low Prandtl number fluid melts subject to symmetry breaking and transition to ... Read More
Railgun is an electrically-powered gun that accelerates a conductive projectile along magnetic metal rails. Various factors increase the projectile velocity. Each method has its own advantages and disadvantages. While increasing the projectile velocity, one has to keep in mind the ... Read More
Microelectrodes demonstrate that modeling is crucial for understanding the behavior of complex electrochemical systems. The use of the finite element methods in electrochemistry may be of much more general interest for its ability to handle complex geometries. In this context a ... Read More
This paper presents thermo-mechanical models for predicting the strength of polymer laminates loaded in tension or compression exposed to one-sided radiant heating by fire. The first part is the fire simulation where the FDS model is utilized. The FDS model generates a solution of ... Read More
In many metallurgical processes metals are (heated and) stirred by an oscillating external magnetic field. The magnetic field induces electric currents in the metal and the currents interact with the magnetic field to create a force, the Lorentz force. For high frequencies induction only ... Read More
In this paper, thermal properties of composites are investigated numerically and experimentally. In the numerical study, finite-elements method in COMSOL is used to modelize heat transfer and to calculate the Effective Thermal Conductivity (ETC) of the composite for three elementary ... Read More
A very simplified system for high voltage test is studied, considering reason for voltage holding failures which are not covered by conventional and local design criteria. A first understanding of the problem is obtained by solving the electrostatic potential in a 2D axis symmetric ... Read More
In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation of controlled systems as lumped input and distributed output systems (LDS) is introduced. Next, FEM modeling of temperature fields in ... Read More
This paper describes the use of COMSOL Multiphysics® to determine the shear layer thickness in thin–section aluminum extrusion, based on the minimum work criterion. The studied two aluminum alloys are AA 6063 and AA 7020. The results show that a continuous shear layer featuring ... Read More
