See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
We present a novel method for concentrating and focusing small analytes by taking advantage of the nonuniform ion distributions produced by thick electric double layers (EDLs) in nanochannels with heterogeneous surface charge. Specifically, we apply a voltage bias to a gate electrode ... Read More
Corrosion marks were found in specific areas on the outer wall of a process container. The container is cooled by a spiral cooling jacket. The corrosion marks were found in the lower and upper circumference of the container and also in the areas adjacent to the water inlet and outlet. ... Read More
Helicon Injected Inertial Plasma Electrostatic Rocket (HIIPER) [1] is an advanced space propulsion system being studied in University of Illinois Urbana-Champaign. It has been depicted in Figure 1. An experimental setup is already being used to gather dynamics of plasma with the help of ... Read More
Single droplet drying (SDD) is an established experimental set up in which an isolated droplet is dried under a controlled environment. The drying behavior in the SDD experiments is often complicated and challenged to observe. Hence, a robust model of single droplet drying can provide an ... Read More
In this work, we present simulations of a novel micromachined calorimetric flow sensor using COMSOL Multiphysics. The sensor is based on four germanium thermistors that serve as heat sources and as temperature sensors simultaneously. In operational mode, the heated membrane is cooled by ... Read More
An external magnetic field imposed on a ferrofluid with a temperature gradient, results in a non-uniform magnetic body force, which leads to a form of heat transfer called thermomagnetic convection. A magnet placed near the device will always attract the colder ferrofluid more than ... Read More
Laser additive manufacturing has become an interesting field of engineering which is revolutionizing industrial processes. Selective Laser melting (SLM) is a widely used additive manufacturing technique for 3D printing of metal structures. This process has a particular complexity in ... Read More
Magneto-Hydrodynamic (MHD) power generation systems were originally investigated starting from the fact that the interaction of a plasma with a magnetic field must take place at much higher temperatures than could be observed in a mechanical turbine. The main problems of traditional MHD ... Read More
The interaction of high power laser beam with metallic materials produces a number of interconnected phenomena that represent a serious challenge for numerical modeling, especially for creation of auto-consistent models. Additional difficulty consists in lack of data on materials ... Read More
This study investigates the effect of uniform magnetic field on the deformation of a ferrofluid droplet in a two dimensional (2D) simple shear flow by means of numerical simulation. The magnetic field is applied in a perpendicular direction to the flow direction. A numerical scheme ... Read More