See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Interfacial structures/pattern, especially with small-scale dimensions, are important to the chemistry of materials in determining the optical, electrical, mechanical, or other physical properties of novel materials. Polymers are often used for surface patterning. The diversity, the ... Read More
A) Abstract: There has been a spectacular growth in the field of wireless communication in recent years. Current trends in mobile wireless communications demand technologies that allow a single device or system to operate across multiple frequency bands and protocols. This cannot be ... Read More
This poster presents the design and analysis of a novel horseshoe shaped MEMS actuator for adaptive optics. The actuation mechanism is Lorentz force enabling low current (below 10 mA) operation. The actuator combined with an overlying aluminum coated SU-8 soft polymer membrane for the ... Read More
High-resolution imaging is useful in oil and gas exploration to identify producing fractures that can be in the millimeter thickness range. In principle, high-resolution imaging maybe achieved using “current injection” to measure the electrical conductivity of the formation. Two current ... Read More
In this paper we present a new model for computing the current density and field distributions in superconductors by means of a periodic space-time formulation for finite elements (FE). By considering a space dimension as time, we can use a static model to solve a time dependent problem. ... Read More
This paper describes the design of a normally closed, electrodynamic microvalve. Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed. The combination of electrodynamic actuation and a mechanical restoring spring are ... Read More
This paper reports the modelling and analysis of three dimensional negative dielectrophoretic traps for cell trapping applications. Dielectrophoresis is a well-established technique for cell analysis and cell trapping. Planar electrodes, at the bottom of a microfluidic channel, have been ... Read More
This paper describes the implementation of an app for calculating low frequency electric fields outside electrical installations. The app is based on a 2D parametric geometry chosen in such a way that it approximates a large class of electrical installations, which consist of a tower or ... Read More
Electric field can bring liquid in motion and thus influence heat transfer. Electro-convection (EC) can be caused by electric forces acting on a liquid, even in absence of space charge. Here, we studied heat transfer in a metal vessel filled by oil, with a submersed high voltage ... Read More
Micro-grippers find applications in micro-robotics, microsurgery, micro-fluidics, micro-relays, assembling and miniature medical instrumentation. Actuation principle involved may be electrothermal, electrostatic, piezoelectric, shape memory and electromagnetic. It has been found that ... Read More
