See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Optical wave interference can perform instantaneous operations, such as: addition, subtraction, multiplication, and more complex operations like Fourier transform [1]. Being able to develop an optical computer that directly executes these operations without the need for a digital ... Read More
We have developed a model for computing current and field distributions in multifilamentary superconducting thin films subjected to the simultaneous effects of transport ac current and applied dc field perpendicular to the sample. The model is implemented in COMSOL’s PDE module (general ... Read More
Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero ... Read More
Among optical gas sensing methods, photoacoustic (PA) spectroscopy combined with a laser source has proven to be a very robust and sensitive method for trace gas detection. COMSOL Multiphysics® software was used to calculate the frequency response of differential Helmholtz resonator ... Read More
In recent years, with the rise of quantum optical technologies, there has been a spurring research interest growing on single-photon emitters (SPE). To date, the focus in engineering improved SPE has been mainly towards better enhancement overlooking the tenuous manufacturing process ... Read More
Dr. Yosuke Mizuyama is a Lead Engineer at Panasonic Boston Laboratory. He has been working on various electronics for Panasonic Corporation in Japan for many years. His research includes incandescent/fluorescent lamp, electrostatic/pzt inkjet, MEMS and BD/DVD/CD optical drive. His ... Read More
The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization ... Read More
Raman spectroscopy is a commonly used tool in biodiagnostics and sensor technology. Surface-enhanced Raman scattering provides high signal enhancements especially at nanostructured metallic surfaces. In this paper the electromagnetic Raman enhancement from different metallic ... Read More
Introduction: This study aims the optimization and sensitivity analysis of an existing device. A Secondary Ion Mass Spectrometer (SIMS) device is to be equipped with a high power laser in order to increase sputtering speed. The modified device must be capable of handling the increased ... Read More
Plasmonic-based optical trapping is in its infancy and growing rapidly. Research in this area will significantly advance fundamental understanding in fields such as nanophotonics and biophotonics. Novel plasmonic trapping structures and systems can be designed and optimized using the ... Read More
