See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
In this contribution we present a COMSOL Multiphysics® example of a disk piezoelectric ceramic transformer (D-PT) coupled with a bipolar NPN transistor to form an auto-oscillator. The comparison between the simulations and the measurements made on our prototype are found to be in good ... Read More
Parallelization of droplet microfluidics is a challenging task because of the complex fluid mechanics coupling between parallel devices. Failure of few droplet generators can influence the size distribution of the final product and the correct operation of the neighbor devices. One of ... Read More
The use of piezoelectric materials in hearing aid loudspeakers, also called receivers, presents technical and economic advantages such as reducing the number of parts of the system and its manufacturing cost. However, the performance of such systems is still not competitive when compared ... Read More
Introduction - The ability to precisely manipulate fluid and particles at microscales is one of the essential requirements for various lab-on-a-chip applications such as drug diagnostics, chemical synthesis etc.[1] Recently, the nonlinear interaction of surface acoustic waves (SAW) with ... Read More
A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss ... Read More
The soil ionization is an important phenomenon to be considered in the analysis of grounding electric systems. In this way, this work has proposed a procedure that allows modeling grounding systems with COMSOL Multiphysics and MATLAB® taking into account the soil ionization effects ... Read More
INTRODUCTION. In a magnetic resonance imaging (MRI) system (see Fig. 1), it is necessary to excite the nuclei of a patient into coherent precession for imaging. This requires coupling between the nuclei and a source of radio frequency (RF) power (the transmitter). To receive a ... Read More
The sound propagation and absorption properties in porous media under high sound pressure level conditions have been reported elsewhere. Also several analytical and semi-analytical solutions have been developed; however, these solutions are relatively complicated and the provided results ... Read More
CANDU® reactor pressure tubes (PT) contain D2O, which is used as a moderator. Surrounding the PTs are gas-filled Calandria Tubes (CT), which thermally isolate the PTs from the moderator surrounding the fuel channels. If the garter springs move apart, the PT will sag into the CT. Under ... Read More
In this study, COMSOL Multiphysics® software was used to simulate the surface response to excitation method (SuRE). An aluminum beam with a piezoelectric element bonded is modeled using the COMSOL Acoustics Module. A frequency domain sweep study was performed to simulate the sweep sign ... Read More
