See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
With the development of micro and nanotechnologies, integrated structures based on piezoelectric thin films are widely investigated and their characterization become a crucial issue for the development of new applications. A laser interferometry is here used to assess the mechanical ... Read More
The finite element method was used for simulating the dielectric response of polymer matrix dielectric composites with randomly and evenly distributed fillers. The dielectric simulation of the composite materials was conducted using a time harmonic-electric current solver in the AC/DC ... Read More
Microwave impedance microscopy (MIM) is a novel mode of atomic force microscopy that can measure topography and local electrical impedance simultaneously and with nanometer spatial resolution [1]. This technique is typically used qualitatively, identifying defects in nanodevices or ... Read More
In this work, we have taken a model which is simulated using COMSOL Multiphysics®. It was used as a tool to design, characterize and to simulate an example which is nanofibers based piezoelectric energy generators. The results are compared with other available sources but using with ... Read More
In this paper, all optical microring resonator based on Lithium Niobate on Insulator (LNOI) has been proposed. LNOI has high refractive index contrast and also show better electro-optic & acousto-optic effects. The optical ring resonator resonates when the optical path-length of the ... Read More
The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT ... Read More
The focus of this paper is to study the effect on resonance frequency and power enhancement techniques[1] of piezoelectric MEMS and modeling, design, and optimization of a piezoelectric generator based on a two-layer bending element(Figure 1) using COMSOL Multiphysics. An analytical ... Read More
Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of ... Read More
The Micro electro mechanical systems (MEMS) technology provides us a platform to interface between mechanical and electrical components. In this paper, we have designed MEMS accelerometer based on piezoelectric property, and simulated using COMSOL Multiphysics®. The design, which has ... Read More
To prevent further complications in diabetes, proper management of blood glucose levels is essential. By using ultrasonic transceivers (both transmit and receive) the glucose level of human blood can be determined. By using this ultrasonic technique miniaturized sensors for non-invasive ... Read More
