See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS ... Read More
Electromagnetic actuators are representing one important component of ABB's medium voltage reclosers [1, 2]. Their performance is strongly influenced by the considered material properties as well as by the electronic control units that will power the actuator. Depending on the studied ... Read More
Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine ... Read More
Zinc Oxide (ZnO) was chosen as the piezoelectric material. A multi – d31 mode cantilever design was used, with varying dimensions of cantilever, to form an array. The individual cantilevers can be either connected in series or in parallel to achieve different output characteristics. ... Read More
A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. ... Read More
The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface ... Read More
A novel type of tunable surface acoustic waves (SAW) filter based on 1D phononic crystal controlled by electric is field proposed. The tunability of proposed filter varied over a wide range: 1-20%. Basic idea is electrical controlled induced periodical domains in ferroelectric film based ... Read More
In high-speed digital design, strong electromagnetic coupling exists between adjacent transmission lines. This manifests itself in the form of crosstalk voltage induced on either line. Crosstalk is modeled in terms of capacitance and inductance matrices which are extracted using COMSOL ... Read More
The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on ... Read More
A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains ... Read More