See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
In this article, the aim is to study different types and forms of electromyography (EMG) electrodes, for bipolar configuration, and the electric interface with muscle phantom. COMSOL Multiphysics allows modeling shapes and contact surfaces. Surface and needle electrodes will be modeled. ... Read More
The design of a magnetic resonance imaging (MRI) RF coil using finite element method-based analysis is an essential part of a multi-year research project at the National Institute of Standards and Technology, Gaithersburg, Maryland, where the goal of the project is to develop a “phantom” ... Read More
A new regulation for the safety assessment of dams has just been developed in Italy and its approval process is still in progress. As a matter of fact the behaviour of dams under seismic loading conditions is deemed of actual interest due to the recent seismic events occurred. In ... Read More
The present paper presents numerical calculations of the magnetic fields and the current distribution within a wind turbine nacelle. The results are used by control system engineers designing panels and cables, who must ensure that the immunity of the equipment complies with the ... Read More
The use of microwaves for heating purposes of dielectric materials is encountered in many industrial applications (food processing, chemistry, material engineering and medical applications). In most of these thermal applications, the prediction of the temperature evolution within the ... Read More
This session addresses some common challenges in electromagnetic modeling and simulation. The introductory presentation will cover how to pick and choose between a large number of available formulations in three separate modules including the AC/DC Module, RF Module, and Wave Optics ... Read More
While low frequency light is poorly transmitted through an aperture in a conductive thin film, in the phenomenon known as extraordinary optical transmission (EOT), a narrow band of selected frequencies are transmitted when incident on an array of subwavelength periodic apertures where ... Read More
Multilayer planar transformers are widely implemented in power electronic applications. The design process of these elements is complicated due to the complexity of a magnetic circuit and high frequency interactions between windings. Additionally, an analytical approach to the analysis ... Read More
This paper introduces an efficient model to describe energy dissipation in acoustic. When the propagation domain has hard wall boundary conditions only viscous and thermal losses happen and are completely described by the so-called Full Linearized Navier-Stokes model (FLNS) which is ... Read More
In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent ... Read More