See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Air bearings are special type of bearings which provide nearly zero friction between two surfaces. This is achieved by a compressed layer of gas between the surfaces. This study presents a modeling technique for an Air bearing component. COMSOL Multiphysics® is used to efficiently ... Read More
Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an ... Read More
In the field of pasta drying, where accurate prediction of temperature and moisture content distribution is critical, the use of modeling and simulation plays a key role. This study aims to assess operational conditions that ensure the production of safe, high-quality pasta. An advanced ... Read More
Digital rock physics (DRP) is an emerging field where a rock sample is imaged, relevant physical processes are simulated numerically on the digital rock sample, and the numerical solutions are used for understanding and interpreting the rock in different in-situ conditions. The use of ... Read More
Seismic evaluation of existing dams is a major issue that has been even more highlighted by the recent events in Italy. In this regard, researchers and engineers need a reliable and quick tool to assess the complex behaviour of the structure – fluid – soil system. In this paper the soil ... Read More
This paper reports the simulation of micro-electro-mechanical system (MEMS) cleanroom for the purpose of determining the effect of particulate contaminants on the static stress response of cantilever type MEMS devices, such as high precision MEMS pressure sensor. The contaminant presence ... Read More
Functionally graded materials (FGM) are those that contain chemical, phase or structural gradients. Whilst the design of functionally graded structures is well researched in areas such as shape optimisation and topology optimization, their manufacture is still in development. One ... Read More
The Huygens Atmospheric Structure Instrument (HASI) was designed to characterize the physical properties of the lower atmosphere and surface of Titan, the planet-size moon of Saturn. The Relaxation Probe (RP) sensor on the Huygens probe, determined the electrical conductivity in the ... Read More
Efficient modeling and computation of the nonlinear interaction of fluid with a solid undergoing nonlinear deformation has remained a challenging problem in computational science and engineering. Direct numerical simulation of the non-linear equations, governing even the most simplified ... Read More
Increasing attention has been paid to application of the quartz crystal microbalance with dissipation (QCM-D) sensor for monitoring biomolecular interactions. This paper focuses on a practical application of protein-protein binding affinity measurement at low concentrations and minimal ... Read More
