See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
An artificial hand is the one that replaces the hand lost through trauma, disease, or congenital conditions. The proposed design is to simulate a sensor, used in prosthetic hand so as to measure the pressure required to hold the object, using COMSOL Multiphysics®. The physical parameters ... Read More
A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made ... Read More
In this paper , lab on chip (LoC) is proposed to detect an E.coli bacteria in water. LoC is a chip of size ranges from millimeter to few centimeter in which we can combine laboratory functions. The main components in lab on chip are micro fluidic structure, functionalized sensing block , ... Read More
The glow discharges in argon at pressures of 1 to 20 mTorr are modeling using COMSOL Plasma Module. DC glow discharge with secondary electron emission is compared to low pressure arc with thermionic emission. Boundary conditions on dielectric discharge tube walls are compared to that of ... Read More
Steven Conrad received his MD degree from Louisiana State University in 1978, and his PhD degree in Biomedical Engineering from Case Western Reserve University in 1985. His clinical practice includes intensive care and emergency medicine, and his research interests include computational ... Read More
In this study, a detailed finite element model coupling the motion dynamics and electromagnetics of a diaphragm based MEMS vibration energy harvester is presented. The energy harvester converts low frequency vibrations to high frequency response by magnetic actuation of a diaphragm ... Read More
In this paper, the attempt has been made to design and analyze single strip shielded Microstrip line with capacitive coupling. The main objective is to compute the capacitance per unit length of shielded Microstrip line using Finite Element technique. The computational and simulation ... Read More
With their small size, low manufacturing cost, fast transient response, and capacity to generate fluid power directly from small electrical power sources, microdevices incorporating electroosmostic flow (EOF) have wide-ranging applications, including newly developed high-performance ... Read More
Most probably Gauss\'s law is considered as the first \"electromagnetic\" concept for early undergraduate physics and electromagnetic courses. In early study year, teaching Gauss’s law is usually performed based on two main components; 1) The use of simple symmetrical charge ... Read More
It is important in designing micro-electromechanical systems (MEMS) to reduce the variability of design parameters caused by manufacturing tolerances and material properties. At NXP COMSOL has been used to investigate many aspects of the design, such as the Q-factor, anchor losses, ... Read More