See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2019 Collection

Towards the Modeling of Microgalvanic Corrosion in Aluminum Alloys: the Choice of Boundary Conditions

N. Murer[1], N. Missert[2], and R. Bucchheit[1]

[1]Fontana Corrosion Center, Ohio State University, Columbus, OH, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

Aluminum alloys in near-neutral, mildly aggressive solutions, undergo damage accumulation during corrosion, mostly due to the presence of micrometer-sized constituent intermetallic particles (IMP) that create a microstructural discontinuity at which localized corrosion occurs. The ... Read More

Vertically Emitting Microdisk Lasers

L. Mahler, A. Tredicucci, and F. Beltram
NEST-INFM and Scuola Normale Superiore, Pisa, Italy

We describe the modeling of microdisk lasers displaying vertical emission. The devices are THz quantum cascade lasers with metallic gratings fabricated along the circumference.  The emission properties of the fabricated devices are well explained by the model, good mode control is ... Read More

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

X. Sillen
Belgian Nuclear Research Centre (SCK-CEN), Waste & Disposal Department, Mol, Belgium

Disposal in deep clay geological formations is one of the promising options for disposal of high-level radioactive waste. Yet, they can generate considerable amounts of heat as a side effect of radioactive decay. This paper shows how COMSOL Multiphysics has been used to evaluate the ... Read More

Numerical Simulation of the Thermal Response Test Within Comsol Multiphysics® Environment

C. Corradi, L. Schiavi, S. Rainieri, and G. Pagliarini
Department of Industrial Engineering, University of Parma, Italy

An estimation method, known as Thermal Response Test, of the soil thermal properties necessary to the design of a borehole geothermal energy storage system is discussed in relation to its application to the ground having non–homogeneous composition. The governing equations of the ... Read More

A Dynamic Electrowetting Simulation using the Level-Set Method

B. Cahill[1], A. Giannitsis[1], G. Gastrock[1], M. Min[1,2], and D. Beckmann[1]
[1]Institut für Bioprozess- und Analysenmesstechnik e.V., Heiligenstadt, Germany
[2] Department of Electronics, Tallinn University of Technology, Tallinn, Estonia

Electrowetting occurs with the electrical control of the surface wetting properties through the application of an electric potential. A simulation of electrowetting driven droplet dynamics is performed using the COMSOL Multiphysics level-set method for a sessile droplet and for a ... Read More

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are ... Read More

Numerical Analysis of the Impact of Geometric Shape Patterns on the Performance of Miniaturized Chromatography Systems

R. Winz[1], E. von Lieres[2], and W. Wiechert[1]
[1]Department of Simulation, University of Siegen, Siegen, Germany
[2]Institute of Biotechnology, Research Centre Jülich, Siegen, Germany

We have implemented a two dimensional chromatography model for the analysis and optimization of structured micro pillar arrays. Dynamic surface interaction of solved molecules is taken into account by the kinetic Langmuir model. Variations of the pillar array geometry lead to deviations ... Read More

Advanced Modeling of Friction Stir Welding – Improved Material Model for Aluminum Alloys and Modeling of Different Materials with Different Properties by Using the Level Set Method

S. Dörfler
Wilhelm Gronbach GmbH, Wasserburg a. Inn, Germany

Friction Stir Welding (FSW) has gained much importance throughout the last years. Beside comprehensive experimental work that has been carried out, the simulation of the welding zone is of major interest.  Due to the high strains observed within the welding zone, the Eulerian (CFD) ... Read More

Heat and Mass Transfer in Convective Drying Processes

C. Gavrila[1], A. Ghiaus[1], and I. Gruia[2]
[1]Technical University of Civil Engineering Bucharest, Faculty of Building Services, Bucharest, Romania
[2]University of Bucharest, Faculty of Physics, Bucharest, Romania

A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady convective drying of agricultural products (fruits and vegetables) in static bed conditions. The model utilizes water sorption isotherm ... Read More

Validation of Measurement Strategies and Anisotropic Models Used in Electrical Reconstructions

R. Sadleir
Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA

We are developing approximations of electrically anisotropic materials for use in novel imaging methods. Our modeling work in COMSOL comprises comparisons of anisotropic and layered models in terms of electrical conductivities measured using different strategies. We tested solution ... Read More