See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Realization of an efficient coupling between photonic sub-micrometer size modes and hundred micrometer wide free-space beams remains a main engineering hurdle to a wider acceptance of miniaturized chip-scale atomic and bio systems. The major obstacle comes from a gigantic mode mismatch ... Read More
Over the past two decades, extensive research has been conducted on ultraviolet (UV) photodetectors (PDs) because of their potential applications across various fields including military, medicine, environmental monitoring, and deep space explorations. To fabricate solar-blind UV PDs ... Read More
By means of a numerical 3D-FEM-simulation, some alternatives for the arrangement of the waveguide supplying the microwave energy to a cylindrical ceramic filter are investigated. The different alternatives are compared concerning a homogenous distribution of the electromagnetic field and ... Read More
Electroplating is a vital technology widely employed for many technological applications ranging from decorative or anti-corrosion coatings to high precision nanotechnology passive electromagnetic cloaking devices. This 2D Axisymmetric Electroplating Model demonstrates one of the ... Read More
The authors are currently investigating the use of bulk high temperature superconductors as trapped field magnets (TFMs) in order to increase the electrical and magnetic loading of an axial gap, trapped flux-type superconducting electric machine. In electric machines, the use of ... Read More
In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is ... Read More
Power grid voltages and currents may be distorted due to presence of harmonics. Measurements of such voltage with harmonics may be performed using newly developed instrument with a small air-core transformer based probe as the input unit. The probe must be shielded against unknown ... Read More
Domestic microwave ovens are notorious for their uneven heating of food materials. This is caused by a varying electromagnetic field whose variation is caused by a number of factors dependent on the oven and the food parameters. Experimental validation of heating would therefore give ... Read More
Interaction between the probe and a defect in eddy current non-destructive evaluation is studied. Evaluation of sensor signal response is the basis for the calculation. In this work a differential sensor is considered and the problem regarded here is problem 8 from the testing of ... Read More
ICP reactors are usually meter sized and driven at RF frequencies, for example at 13.56 MHz. We developed a miniature resonator allowing an inductive type of coupling of microwaves at 2.45 GHz to a plasma jet, flowing in ceramic tubes. Previous experiments and simulations show an ... Read More
