See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the ... Read More
We describe simulations performed in COMSOL Multiphysics® of the precipitation of helium (He) on solid-state interfaces. The non-uniform precipitation of He at certain interfaces is a result of a heterogeneous energy distribution in the interface plane: He wets high interface energy ( ... Read More
Within a borehole a nozzle can be installed in order to increase the efficiency of fluid injection. The position of the nozzle is located near the perforated casing of an injection well. A COMSOL Multiphysics® model is set up for a typical nozzle design as applied in practice. The model ... Read More
The problem under investigation is electrical scale-up of a generic metallurgical process for primary metal production through resistive heating of slag by electric current, typically supplied by an AC three-phase system. Maxwell’s equations are analyzed revealing that the properties of ... Read More
The finite element method applied to the k-epsilon turbulence model is used to investigate the two-stream turbulent mixing layer. Whereas the model is known as one of the most popular of the turbulence models to date, the model has yet to be applied to the classical mixing layer problem ... Read More
Liquid transport in lab-on-a-chip (LOC) devices occurs through a microchannel that uses an electroosmotic flow actuation mechanism. This method has a plug-like velocity profile, which is ideal in species transport and in wall-bounded reactions. Under substantial joule heating, it is not ... Read More
RF propagation modelling in (30 – 1000 MHz) SAR region for predicting the location and intensities of constructive interference patterns within rectangular confined spaces using waveguide theory and ray tracing techniques. Read More
Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to ... Read More
Thomas Dreeben received his B.A. in Philosophy and Mathematics in 1985, and his Ph.D. in Mechanical Engineering in 1997, both from Cornell University. He has worked in automotive fuel systems at Ford Motor Company, and in turbulence at Sandia National Laboratories. He currently works in ... Read More
Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of ... Read More