Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the manufacture of sulfuric acid. COMSOL Multiphysics provides a powerful numerical platform for simulation of ...

COMSOL Multiphysics in Plasmonics and Metamaterials

S. Sun [1,2], and G. Guo [2,3]
[1]Physics Division, National Center for Theoretical Sciences (North), National Taiwan University, Taipei 10617, Taiwan
[2]Department of Physics, National Taiwan University, Taipei 10617, Taiwan
[3]Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan

This paper will present research about: * Effective-medium properties of metamaterials: A quasi-mode theory * 2D complete band gaps from 1D photonic crystal * Optical microcavities

Development of a User Interface for Design of SO2 Oxidation Fixed-Bed Reactors

A. Nagaraj [1], P. L. Mills [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply and hence to increase production, recycling and innovative clean technologies must be explored. From ...

Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software

L. Wang [1],
[1] Konica Minolta Laboratory USA, Inc., San Mateo, CA, USA

Organic light emitting diode (OLED) is an emerging technology for next-generation flat panel display and solid-state area lighting thanks to its many advantages such as light weight, low operating voltage, and flexibility, etc. A typical OLED has a multilayer structure that includes a glass or plastic substrate, an anode (ITO), a hole transport layer (HTL), an emitting layer (EML), an electron ...

Modeling Metamaterials with a Time-Domain Perfectly Matched Layer Formulation

H. Assi [1], R. S. C. Cobbold [1],
[1] University of Toronto, Toronto, ON, Canada

INTRODUCTION: Perfectly matched layers (PML) have been widely used for simulating wave propagation in unbounded media to effectively avoid spurious wave reflections from the computational domain boundaries. Time-domain PML formulations, especially for elastic waves, usually use a complex system of first-order equations. Compact second-order time-domain formulations are particularly desired ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, in ...

Study of Capacitance in Electrostatic Comb-Drive Actuators

P. Hanasi [1], B. G. Sheeparamatti [1], V. Abbigeri [1], N. Meti [1],
[1] Visvesvaraya Technological University, Belagavi, Karnataka, India

Capacitor is mainly defined as two conducting plates that can hold the opposite charges on it. These plates can be used either as a sensor or an actuator. If the relative distance between the two conductors changes as result of given input, then capacitance values will change. This results in basic of capacitive or electrostatic sensing configuration. On the other hand, if a voltage or the ...

Modeling Polybenzimidazole/Phosphoric Acid Membrane Behaviour in a HTPEM Fuel Cell

C. Siegel[1,2], G. Bandlamudi[1,2], and A. Heinzel[1,2]
[1]Zentrum für BrennstoffzellenTechnik (ZBT) gGmbH, Duisburg, Germany
[2]Institut für Energie- und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

Phosphoric acid doped polybenzimidazole (PBI) membranes are commonly used in today’s high-temperature polymer-electrolyte-membrane (HTPEM) fuel cell technology. COMSOL Multiphysics is used to model and simulate the three-dimensional, single-phase, non-isothermal overall cell behaviour at different operating points. The sol-gel PBI/H3PO4 membrane behaviour is modeled using an Arrhenius ...

3D Acoustic Streaming Field in High-Intensity Discharge Lamps - new

B. Baumann[1], J. Schwieger[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge lamps will in the foreseeable future be important light sources despite a growing market share of LEDs. Cost and energy efficient high frequency (300 kHz) operation is hampered by the excitation of acoustic resonances inside the arc tube, which results in low frequency (10 Hz) light flicker. Our aim is to calculate the acoustic streaming velocity field, which is related ...