See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Many liquid food processes involve coupled phenomena of fluid flow, heat transfer and product transformation. A typical example is the heat treatment of a starch suspension inside a tubular heat exchanger. Fluid flow influences heat transfer which determines temperature evolution along ... Read More
The article deals with the magnetically-supported high-power full-penetration laser beam welding of aluminum. A stationary simulation was conducted accounting for the effects of natural convection, Marangoni convection and solid-liquid phase transition as well as an electromagnetic ... Read More
Adiabatic compression of gases can work as an ignition source and is still one of the main causes of accidents in chemical plants processing tetrafluoroethylene (Reza and Christiansen, 2007). The ignition of tetrafluoroethylene induced by adiabatic compression has been studied ... Read More
Introduction: Power electronic converters such as those for High Energy Physics Experiments (HEPEs) must operate in thermally hostile environment. Heat generated by electronics components must be conveniently dissipated to ensure electrical performances and improve reliability. Due to ... Read More
A conjugate conductive-convective-radiative discrete model useful for the study and the simulation of heat transfer in a ceramic or metallic foam is presented. A Generation-based Technique is used for the foam representation, using the Weaire-Phelan structure and heat transfer is studied ... Read More
Water removal during paper manufacturing is an intensive energy process. The dewatering process generally consists of four stages in which the first three stages, water is removed mechanically through vacuum pulses and pressing.The fourth stage involve thermal drying. The vacuum ... Read More
During Physical Vapor Transport (PVT) growth of single 4H-SiC crystal and subsequent cooling down, thermal stresses lead to the multiplication of dislocations that are non-desirable for the semiconductor applications of this material. These dislocations induced by thermal stresses could ... Read More
Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive ... Read More
Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and ... Read More
A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. ... Read More
