See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Raman spectroscopy is a commonly used tool in biodiagnostics and sensor technology. Surface-enhanced Raman scattering provides high signal enhancements especially at nanostructured metallic surfaces. In this paper the electromagnetic Raman enhancement from different metallic ... Read More
Corrosion of metals in confined zones is a big industrial problem. The electrochemistry of such localized corrosion processes is complicated by the impact of the corrosion processes on the composition of the local solution. In the present problem, local interaction with the atmosphere ... Read More
A new type of radiator with a package of combs, to gain a larger area for heat exchange, instead of trapezoidal convector plates, is investigated. The main aim is to find the optimal comb diameter. To solve this problem, CFD (computational fluid dynamics) with COMSOL Multiphysics is ... Read More
In this work, electrothermal microgrippers designed using topology optimization are modeled. The microgrippers are composed of two 5 μm-thick polysilicon actuators facing each other. The gap between the actuators are 2 μm in the initial state and the microgrippers are able to both fully ... Read More
This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids. The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q ... Read More
Progress in coating technology has allowed for the development of free-chromate corrosion inhibitors, which are able to smartly migrate when required. In order to support the coating design, we propose a hybrid mathematical model to study the inhibitor's release by taking into account ... Read More
In this paper will be presented how an electronic system and its components will respond in case of an impact of an external electromagnetic pulse (EMP). In the first instance the coupling process of transient electromagnetic pulses into electronic systems will be shown. Out of that the ... Read More
The most successful nanofiltration models are those based on the combination of the Extended Nernst-Planck equation with the Donnan steric equilibrium. These models have been typically solved by using iterative procedures based on the Runge-Kutta method. Yet, such procedures present ... Read More
This work concerns the performance of an oxidation catalyst used in a NOx storage and reduction system. The oxidation of NO is the main objective of this study, where the presence of CO and propene has also been taken into account. Experimental data has been determined on a monolithic ... Read More
Strained technology is being promoted as the best way to extend the performance of semiconductor transistors. An inhomogeneous layer deposited on top of a silicon device can induce a strong modification in the real silicon strain state, and consequently in its electronic performance. ... Read More
