See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
To reduce friction in lubricated tribological contacts, the surfaces of the contacting bodies can be microstructured to improve lubricating conditions. For lower loaded contacts this approach has already reached industrial applications, e.g. the piston-liner contact. For higher loaded ... Read More
This study examines the effect of air flow between the building integrated PV-panel and the wall. To formulate the heat exchange process for the air flowing between the PV panel and the wall, time-dependent, heat transfer partial differential equations (PDEs) are solved with COMSOL ... Read More
During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in ... Read More
This document has been produced by Washington River Protection Solutions, LLC on behalf of the Department of Energy (DOE) for the use of COMSOL when simulating applications related to DOE's waste management. COMSOL has been classified as a grade D acquired software program and this ... Read More
The multiphysics analysis of a 130 GHz klystron is described in this paper. Critical quantities are exposed to multiple physics effects acting on narrow dimensions modified by power dissipations. The proposed device uses an integrated injection/bunching section described in last COMSOL ... Read More
Usually, when calculating the blood flow in cerebral arteries and intracranial aneurysms, blood is modeled as a Newtonian fluid, neglecting its shear-thinning behavior. Since flow diverting devices slow down the blood flow in the aneurysm sack, the accuracy of this assumption had to be ... Read More
Designing a component with multiple functions, e.g. load bearing and noise attenuation, can increase the effectiveness of each component and reduce the complexity of the overall system, thereby improving system efficiency as well. Current multifunctional components include metal foam. ... Read More
In this paper, an integrated model for ocean waves propagating over a submerged coastal structure, based on COMSOL Multiphysics, is presented. In the model, Navier-Stoke Equation is solved for the wave propagation and Biot’s poro-elastic model is solved for the porous seabed. The new ... Read More
Arterial disease, especially Coronary Artery Disease (CAD) is one of the leading causes of premature morbidity and mortality. During the flow, blood interacts with vessel wall mechanically and chemically which modulates the plaque formation in blood vessel leading to coronary artery ... Read More
Digital Microfluidic Biochip (DMFB) has been widely used in Lab-on-a-Chip (LoC) for disease diagnosis and treatment applications. To quickly convert traditional analog fluidic sample into digital droplets for DMFB processing, a high-throughput microfluidic droplet dispenser device is ... Read More
